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SUMMARY

This is the final report of Grant AFOSR-89-0241 with the Air Force Office of
Scientific Research, which is the continuation of Grant AFOSR-87-0308 to the Georgia
Institute of Technology. The research was performed at Northwestern University with
subcontract to Georgia Tech.

The research covers several aspects of the basic issues that are needed to
develop and implement nonlinear filtering and control schemes for hybrid systems with
applications to tracking, guidance, and control of maneuvering vehicles in uncertain
environments and nonlinear geometry. The research is involved in modeling maneuvering
nonlinear vehicles as switched linear Markov models. The research therefore leads in
several directions investigating various aspects of such models which in general are called
hybrid systems. Three different aspects are considered: The first involves realization and
other generic properties of hybrid systems, including controllability and stability as well as
simulation and averaging. The second involves estimation and detection systems for
hybrid systems, including various related models and approximate filtering schemes. The
third involves the application of switched Markov filtering schemes to the tracking of
maneuvering vehicles.

The research culminated in the conclusion of two Ph.D. thesis by J. Ezzine and
M. A. Ingram at Georgia Tech and one M.S. project by K. S. Lee at Northwestern
University. It also supported the initial stages of three Ph.D. students, P. D. West. C. C.
Tsai, and D. R. Shin who are in various stages of completing their Ph.D. dissertations.



SECTION I

INTRODUCTION

The objective of this research was to develop nonlinear filtering and tracking
schemes for systems subject to complex geometries and uncertainties. These attributes
characterize the air-to-air engagement scenario. The approach was based on the
approximation of the original nonlinear stochastic model with a piecewise linear model.
Then the resulting model was further approximated by a switched Markov linear model.
The resulting model becomes then a typical representation of hybrid systems involving
both continuous and discrete dynamics as shown:

X(t) = A[r(t)] X(t) + B[r(t)] U(t) (1 a)

Y(t) = C[r(t)] X(t) + V(t) (1 b)

where the state vector is X(t), the observation vector is Y(t), U(t) can serve as either the
control vector when considering a control problem, or as the process noise model
representing the model uncertainties for the filtering problem, and V(t) is the observation
noise vector. The noise processes are assumed to be white and Gaussian. The process
r(t) is called either the form index or the macro-state process and is assumed to be a
finite state Markov process taking the values in the set (1,2,...,N]. The resulting system
is known as either a switched Markov linear model or a hybrid system model since the
state X(t) is continuous and the vector r(t) is discrete. The linear system switches among
the finite number of realizations (A[i], B[i], C[i]) depending on the value of r(t), and the
switching follows a Markov chain rule.

The research reported under the earlier grants covered both the analysis of the
switched Markov approximation to the modeling of nonlinear systems as well as
realization and characterization results on hybrid systems. These reports also discussed
filtering schemes for such systems and similar models that involve the dependence of the
Markov process parameters on the system state.

This report addresses continuation of these efforts and resulted in the conclusion
of two Ph.D. theses at Georgia Tech. The two completed theses covered two different
aspects of the mixed models that include both discrete and continuous variables. The
first is by Jelel Ezzine (Reference 1) considered the properties of hybrid systems involving
both discrete and continuous states which in our case reflects the switched linear Markov
models used to represent the maneuvering vehicles to be tracked and/or controlled. The
thesis studied the stability and controllability properties of such systems and derived
conditions under which the systems can be approximated by their statistical average
system. The second thesis is by Mary Ann Ingram (Reference 2) considered an
alternative model for maneuvering vehicles and derived approximate filtering schemes for
such models that involve linear systems driven by impulsive inputs whose rates depend
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on the state of the system. Since exact filtering representations are not realizable,
conditions for the convergence of several detection-estimation schemes were obtained
and their result validated via simulations.

This report concentrates on extensions of the results to three areas. The first area
involves the simulation and analysis of the multi-model approximate filtering scheme that
has been tested earlier using limited memory only and its extension to three-dimensional
tracking filter for a maneuvering target and is reported in Section II. The second area,
covered in Section III, addresses the analysis and control of hybrid systems when the
both the state dynamics and the form index exhibit fast and slow modes of behavior. The
third area considers additional work in the realization of hybrid systems and is discussed
in Section IV. The body of each section is relatively short, as the results are provided in
appropriate appendices.
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SECTION II

FILTERING SCHEMES FOR HYBRID SYSTEMS

Several models and approximations have been considered for the filtering schemes
for hybrid systems and their applications. Ingram's thesis (Reference 2) considered a
continuous state model with Markov chain input whose transition matrix depends on the
state of the systems. Exact filtering schemes cannot be derived analytically or
implemented numerically. A new prior penalty approach to the filtering for such systems
has been proposed and analyzed by Ingram in Reference 3 and is shown in Appendix A.
The resulting filter is superior to the suboptimal linear smoother when the rates of change
of the Markov process are very low and when the impulsive input jumps do not take very
small values.

In addition to the research reported in Ingram's thesis, additional approximation to
the nonlinear filtering structure reported in Reference 4 has been proposed. In particular,
the effort has been centered at reducing the memory requirement of the multi-model filter
as well as providing a more realistic simulation scenario. In particular, an extension of the
memory of the filter to 4 steps has been shown to provide a substantial improvements
over the single step memory filter, as shown in Reference 5 and attached as Appendix
B. Furthermore, it has been shown that increasing the filter dimension does not result in
reduced performance as discussed in Reference 6 and attached in Appendix C. This
latest work indicates that the filter is applicable to a three dimensional tracking problem,
and provides and alternative approach to the modeling of the maneuver acceleration.
Analysis methods to indicate the asymptotic convergence of the filter and its performance
are encouraging.

Finally Reference 7 discusses a general framework for the filtering and smoothing
for systems with both discrete and continuous observation models. The results are
primarily analytical in nature and the implementation issues have not been resolved as yet.
The representation is shown in Appendix D.
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SECTION III

ANALYSIS OF HYBRID MODELS

Two avenues of research have been followed in the simulation and analysis of
hybrid systems models. The first established analytical and simulation tools for the study
of how well such models can be used to approximate piece-wise linear dynamic systems.
Earlier results simply addressed the first order densities of such models. In this study the
autocorrelation function of both the model and the original system have been simulated
and compared to verify the conditions (earlier only studied in theory) for the validity of the
approximation. Furthermore, an analytical approach has been developed for the analysis
of the steady-state stationary probability density of the system model and its comparison
to the approximating hybrid model. The results are documented in an M.S. project by K-
S. Lee shown in Reference 8.

The second continued the research into hybrid systems models that involve both
fast and slow dynamics. The fast and slow dynamics are involved in both the systems
models and in the Markov chain that determines the transition among the various
realizations. Earlier work (Reference 9) was concerned with the limiting behavior of such
systems when the Markov chain was either fast or slow. More recently, the results have
been extended to the case where the Markov chain can be decomposed into groups of
fast transitions. Furthermore, asymptotic results for the convergence of the reduced-order
models have been derived for a variety of cases of fast and slow behavior in the
continuous system model and in the underlying Markov chain. The results are given in
Reference 10, and are shown in Appendix E. One restriction to the resulting
approximation is that system matrices of the realizations involved in each group of fast
transitions have to commute. More recently, this restriction has been successfully
removed as shown in Reference 11 and attached in Appendix F. However, the results
still require the stability of each group of realizatioi is. The research also provide complete
analysis of the multiple-time scale approximation for such systems for both the slow and
the fast dynamics of the system. The relative ratio of the time-scale of the Markov chain
transition matrix to those of the continuous states is crucial to the type of the resulting
approximation.

Finally, the conditions for the control and stabilization of hybrid systems using the
average model constant gain controllers or switched gains controller that may depend on
the correct detection of the macro-state have also been derived. Furthermore, if we
assume that it is not possible to correctly identify the macro-state (the value of r(t)) of the
system, conditions on the probability of detection errors have been found that will make
such a controller feasible. The results are given in Reference 12 and Appendix G.

Overall, these results make it simpler to implement lower order controllers or less
complex controllers for a variety of hybrid systems that either exhibit fast and slow
dynamic responses or satisfy conditions that allow their robust control.
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SECTION IV

REALIZATION AND CONTROL

The section addresses several issues in the realization models for hybrid systems.
These models can lead to a more systematic approach to the identification and control
of these systems. Canonical forms for the periodic hybrid systems have been developed
in Reference 13 and shown in Appendix H. The sensitivity of various realizations of hybrid
systems have been developed in Reference 14 and are shown in Appendix I. The
sensitivity is crucial to the efficiency of any identification or control schemes that needs
to be used in conjunction with specific realization. A special case of hybrid systems that
have linear relations among its continuous states can be represented as singular hybrid
system. These systems may also be considered as a limiting case of singularly perturbed
systems discussed in Section III. References 15 and 16 discuss general approaches to
the realization problem of such systems that have implication on their control. The results
are shown in Appendix J and Appendix K. Finally, for randomly changing hybrid systems
and their underlying Markov chains a novel representation for the system is given in
Reference 17 and Appendix L. Similarly, a novel realization theory has been proposed
in Reference 18 and shown in Appendix M for the realization of Markov chains that are
crucial to the analysis and control of hybrid systems.
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SECTION V

SUMMARY AND CONCLUSIONS

The research summarized in this report and supported by the Air Force Grant
provides the basis for the design of estimators controllers for systems subject to random
fluctuations in their models and their environments. The controllers and estimators are
not optimal as it is not possible to implement and analytically derive an implementable
form. Hence, approximation methods have been studied for the derivation of
implementable control scheme and filtering schemes for such systems. Approximations
using slow and fast dynamics separation and reduced-order modeling have been
proposed for such systems to simplify the control and estimation implementation. Finally,
applications to the tracking of maneuvering vehicles have been proposed, the resulting
approximate filter derived and simulated for several one-dimensional and three
dimensional problems.
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SMOOTHING FOR LINEAR SYSTEMS EXCITED BY POINT PROCESSES
WITH STATE-DEPENDENT RATES

Mary Ann Ingram Abraham H. Haddad
School of Electrical Engineering Department of Electrical Engineering
Georgia Institute of Technology and Computer Science
Atlanta, Georgia 30332-0250 Northwestern University

Evanston, Illinois 60208-3118

Abstract

Smoothing for a linear system driven by a point process with a rate that
depends on the state of the system is considered. The observation model is
the integrated version of a linear combination of the states in additive white
Gaussian noise. A smoother that uses estimation and detection is compared
with the optimal linear smoother and filter. The comparison is in terms of
the mean squared error (MSE) of the state. The false alarm rate of the
detector is shown to depend strongly on the region of support of the mark
distribution. When false alarms are low, the estimation/detection scheme
has lower MSE than the optimal linear smoother.

I. Introduction

We consider the state estimation problem for the following single input sys-
tem:

dzt = Atdt + BdMt, t > 0

with the scalar observation process

zt = Cz,ds + vt

where vt is a Wiener process with E{vtvul = fI '^ Vdr. The n x n matrix
A s -ch that the solution to * = Az is exponentially stable. The scalar
pro.ess MC is a random jump process with jump heights, or marks, that are
independent and identically distributed and with jump times that occur with
an instantaneous average rate p(ztJ. Thus the rate of jumps depends on the
system state. An example that motivates this model is a manuevering vehicle
where a jump represents an abrupt change in acceleration. The likelihood of
acceleration commands can depend on the position and velocity of the vehicle.
Another example is an electromechanical system where the jumps represent
failures with a likelihood of occurrence that increases under conditions of
excessive heat or current. We are interested in cases where the rate of jumps
is low compared to the bandwidth of the system; imder this condition, the
state is not well approximated by a Gaussian distribution.

The process zt is easily shown to be in the class of piecewise-deterministic
Markov processes," defined by Davis (1]. Filtering and smoothing for systems
driven by Poisson processes have been considered by Kwakernaak (2, 3] and
Au [41, and for a related process by Biom [5].

1I. The Prior Penalty Detector

This scheme uses observations over an interval to detect the number of jumps
within the interval and estimate the times and marks of the jumps. The
state estimate is constructed by superimposing the system responses to the
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detected jumps. In order to reduce computational complexity and memory
requirements, new observations are used to detect new jumps and update
only recently detected jumps. Specifically, the observations over the interval
[A, A + T), denoted by ZA,A+T, are used to detect the number NA,A+T of
jumps in the interval and to estimate the vector of jump times TA ,A . and
marks MNA.A+l of the jumps. Thus fixed interval smoothing is pertormed
on the observations in (A, A + T). Then the interval is moved forward to
(A + A, A + A + T), and fixed-interval smoothing is performed over the new
interval. A detected jump that is left behind by the moving interval is called a
"finalized detection." Here, A is small enough such that Pr{NAA+& > 1} <
1. The system responses to the finalized detections are superimposed to
construct an estimate of the state with a fixed lag. For the sake of notational
simplicity, the following expressions assume that the estimation and detection
is performed on the interval [0, T), and that the initial state z0 is known. In
a sequential implementation, the interval is changed to [A, A + T) and zo is
replaced by the smoothed estimate, iA-

It is noted that the maximum a posteriori (MAP) estimate of No,T can
be expressed as

LMAp{nIZO,T, zO}

NPrN0,T = 01oz), n = 0
: E , (Al Z0,T I-_, U_, NO,T n, z0})()

x Pr{No,T = nlzo}, n > 0

where A{Y,T ( , U, NO,T = n, Zo} is the likelihood functional. The detector
in the present scheme replaces the averaged likelihood functional in (1) with
the likelihood functional evaluated at the MAP estimates of r and un, given
that N0,T = n. Therefore the decision variable is

L{nIZO,T, ZO}

f Pr{N,T = OzO}, n = 0
- A{Z,TnI,iun,O,T = n,zo}Pr{No,T = nlzo}, n >0 (2)

We call this scheme the Prior Penalty Detector (PPD) because the a priori
probablity Pr{N0,T = nlz0} serves as a penalty for overfitting and can be
computed offline for the desired range of values for zo.

III. Simulation Results

Four examples are used to compare the performances of the optimal linear
filter, the PPD, and the optimal linear smoother with the same lag. The per-
formance is measured in terms of the mean squared error (MSE), normalized
by state variance, and the average number of false detections per true pulse
as a function of noise variance. The MSE for the optimal filter and smoother
is computed using the Bode-Shannon method (6]. The MSE for the PPD is
found by time averaging the computer-simulated output.
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All examples have the same scalar system model of dx, = -5zgdt + dM,.
The examples differ in the rate function j[z] and the mark pdf pu(u), as
shown in Figure 1. This type of rate function was chosen to yield "bursty"
behavior in the sample trajectories. If the detector succeeds in detecting the
first few pulses that move the state into a high rate region, then the detector
changes its characteristics to allow more detections. The pdf's were chosen
to illustrate the effect the mark pdf has on the number of false detections.

The MSE results are shown in Figures 2 through 5 for Examples 1 through
4, respectively. The false alarm rates are shown in Figure 6. We observe
that for Example 1, the PPD has a lower MSE than the optimal filter and
smoother, and has very few false alarms. This is because the region of support
of the mark pdf is confined to the positive axis and does not permit arbitrarily
small pulses. In Example 2, the MSE of the PPD is only slightly lower than
that of the linear smoother. The degradation in PPD performance relative to
Example 1 is due to the increased number of false alarms with small marks.
As the noise variance increases, the PPD makes about the same number of
false alarms, but with larger marks. In Example 3, there is a rather dramatic
correlation between MSE and the false alarm rate, as both increase with the
noise variance. The mark pdf for this example allows the false alarms to
have large positive and negative marks that nearly cancel. However, time
quantization in the simulation does not allow such overlapping false alarms
to approach perfect cancellation as the noise variance decreases. The mark
pdf for Example 4 was selected to give the worst case performance of the
PPD because it allows arbitrarily small false alarm marks as well as large
false alarms that nearly cancel. Again the false alarm rate is independent of
the noise variance, but the rate is larger than for Example 2 because there is
no penalty for arbitrarily small marks. Also the optimal linear smoother is
consistently better in terms of MSE.

IV. Conclusions

The simulation results indicate that if the PPD false alarm rate remains
below 3 per true pulse, the PPD yields an MSE lower than the optimal linear
smoother with the same lag. It is noted that these results are somewhat
biased in favor of the linear estimators. One reason is that the MSE for
the linear smoother and filter are evaluated using a" formula that assumes an
infinite observation interval, rather than an interval of length equal to the lag
as in the PPD. Another reason is that although the ratios of (jump rate times
mean squared mark value)-to-(system bandwidth times noise variance) for
our examples were useful for studying false alarm behavior, they guaranteed
good performance for the linear estimators. To see poorer performance by
the linear estimators and better performance by the PPD, one should reduce
this ratio.
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APPROXIMATE SWITCHED-MARKOV FILTERING FOR NONLINEAR SYSTEMS'
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Atlanta, GA 30332 Northwestern University
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ABSTRACT Conditions supporting the validity of these assumptions are
The Kalman filter provides optimal state estimates for derived in [11. The second assumption allows application of the

completely known linear systems. Unfortunately, many physical theory of switching systems. The optimal (albeit non-realizable)
systems are neither exactly known, nor linear. Numerous filtering filter for switching systems was introduced by Ackerson and Fu in
schemes for nonlinear systems have been introduced over the 19"70 (2]. and consists of a likelihood-weighted sum of Kalman
years: general theories for nonlinear systems tend to be complex, filters "tuned" to each possible switching sequence. and. henec.
and, due to their generality, are of little practical use to the design involves exponentially increasing complexity with time. Their
engineer. On the other hand. solutions for specific nonlinearities paper did not consider the additional structure present in the
usually apply only to a single nonlinearity. and thus are limited in hybrid-state model where the dynamics of the system macro-state
their applications. This paper, however, presents a methodology are independent of the system state, but where the system state is
whereby the nonlinearity is first approximated by a piecewise not independent of the macro-state. The optimal filter for this
linear model, and then a common filtering scheme is applied. The hybrid-state model was presented by Bruneau and Tenney in [31.
efficacy of this approach is that the same filtering algorithm may It is shown that this filter is also infinite dimensional and
be applied to a broad class of nonlinear stochastic systems. nonrealizable. Numerous schemes have been introduced to

I INTRODUCTION reduce the filter complexity by casting away unlikely trajectories
Specifically, the problem at hand assumes that, given or combining similar estimates (see e.g. [4[).

nonlinear observations y(k). it is desired to estimate the state x(k) A primary difference between this work and that of [21 is that
of the system here, in the underlying piecewise linear model, the system

macro-state is a function of the system state. This fact is exploited
= g(X.) in the filtering algorithm through the consistency update stage. A

where x. is the n vector representing the system state at time k, wa consistency update occurs when the state estimate for the ?"

is a white, discrete time /-dimensional vector Gaussian random model.f, is compared with the domain of the zi line segment (in

process with covariance matrix Q, and b is an n xl dimensional the scalar case). If the state estimate produced by a given filter is
matrix. The observation model is assumed to be given by not within the domain of the io line segment. then the state

estimate is said to be inconsistent with its macro-state, and less
y, = h(x,)+ vk (2) weight is placed on that estimate.

where y, is an m-dimensional vector which represents the 1I FILTERING SCHEME

observation at time k. and v, is an m-dimensional white Gaussian The filtering scheme applied here consists of maintaining one

measurement noise process with covariance R. The se Kalman filter "tuned" to each of the Af macro-state trajectorics.
Thus. for each new observation, an entire set of 1W innovations

propagation function g(.) and the observation function h(.) am will be formed - one for each filter. Next. the usual measurement
allowed to be nonlinear. and time updates will be performed for each filter, producing Vf

The nonlinearities in (1) and (2) are approximated by the covariance matrices and individual state estimates. Next. the
continuous piecewise linear approximation given by the following overall combined estimate. 2. is formed from the likelihood
model: weighted sum of these M" individual estimates. Finally, the filters

g(x) = Gx + g, for x e ,,, i = L.M, (3) are aggregated, and the conditional probabilities and likelihood

and functions are modified according to the consistency update stage.

h(xl= Hx hi for x e = iI_.^ (4) A detailed summary of these steps is provided here. Additional
details ofthe algorithm may be found in [5].

where [{Q, } and{Q}, partition the state and measurement spaces. Before describing the individual filtering steps. some
For simplicity of notation, the cross product of the two partitions additional definitions are required. The Markov transition matrx.
may be formed to yield one partition. Il. specifying the transition probabilities from macro-state S, to S,

{ = ... M l <M,M. At each time stepk. the system is is obtained from:
assumed to be governed by one of the M models. These M system =Pr {zx, e 11 [x, e £ } (7)
models are called system macro-states.

The final model assumption is that the system jumps from The marginal steady-state probabilities p, of macro-state S, are
macro-state i to macro-state j according to a finite state Markov defined by the solution to:
process. 1. In order to maintain a "memory" of the last r time p = p11 (8)
steps. a parameter J(k) is introduced, where J(k) represents the set where p is a row vector with components p,. The a posteriori
of the .W macro-states, i.e.. probability that the system is in macro-state i at time k may be

(J(k)l = _.-.. _,J.} (5) expressed as

where F_(k) = A,,,(k) (9)it* - 1)

j, (1.2..M (6) where J(kai) denotes all M' - sequences at time k which end in

Conceptually, the new filter is based on two assumptions for macro-state i.
the system model: I) The nonlinearitics may be approximated by
continuous piecewise linear functions and 2) This N.segment Consistency Update
piccewise linear model may be approximated by N separate affine If the variance of any individual estimate. P,, -., is small then
systems driven by the same process, with the mae system output
being approximated by randomly selecting one of the N outputs. the information provided by # may be neglected. In this case.

these values are changed based on the position of the estimate
1-_,,_,(k) in the appropnate region t4, and used to update the a

tThis work supported. in part. by the Georgia Tech Research posteriori macro state probabilities 0,(k IJ(k - 1)). In rum. these

Institute, internal research program E-904-033. and. in part. by the are used in the next stage for updating ,(k - I I k). If. on the other
U.S. Air Force Office of Scientific Research under grant
AFOSR-89-024 1



hand. the individual estimate covanance is large, the macro state II ANALYSIS
information is weighted more heavily in determining the macro Since the filter is complex and nonlinear, it has yet to succumb
state probabilities. In this work, this updating stage was achieved to any closed-form performance analysis techniques. Hence.
through the following equation: Monte-Carlo simulation techniques were used to assess its

p,(k I J(k - I)) = cL(P,(_ _,)j,(k I J(k - 1)) + performance. In the simulation, a scalar version of the proposed
filter with memory, r, of length one (PFI) and four (PF4) is

{I -a(P, _ ,j}U, f(i,-)(k)} (10) compared to a standard Extended Kalman Filter (EKF). Both the
system function (1) as well as the measurement function (2) are

Here.ctP)isafunctionofthenormofPwhichtendstozeroasP defined by 3 segment affine maps g(x)=Gx+k, and
becomes small, and which tends to unity as P becomes large. The h(x) = Hx +k2, where:
operator U,(x) is an indicator function that is equal to unity if f 2.0, I x <. f 5.0, 1 x I< 0.5
x e . and is zero otherwise. G= .. 2,II H=l_-.l, 1x I_0.5 (17)

Time Update
The macro state probabilities ae updated by using the k. 2.2sgn(x), Ix1> I 2.55sgn(x), Ix1>0.

consistency updated values 0, together with the transition k 1 0 , IxLl .1[0, Ixl -I

probabilities, Both Q and R were set to unity and S was varied from I to 10.
A'.. (k+lk) =O,(k IJ(K- l))AI(s 1 )(k)l j, (I1) Figure 1. is a graph which depicts the reiaive error variance as a

Time updates of the individual state and covarianc estimates are function of b parameterized by the filter type (PFI. PF4, or the

achieved via the standard Kalman filter equations for the EKF). As can be seen, the improvements Letween either of the

appropriate models, proposed filters and the EKF is striking. Aditional simulations
(not presented here) indicate similar trends. with the best

Measurement Update performance increases being seen for non-injective nonlineanties.
As above, the individual state estimate, the innovations, and

the covariance may be calculated using the Kalman filter for the
appropriate model under consideration. The question now is
concerned with the measurement update of the macro state -
probability estimates. This can be accomplished by using the
standard likelihood function for a switched-Markov model,
which, it should be noted, is only an approximation in this case. 0 O

The expression for the a posteriori probabilities in this case will
be proportional to the likelihood functions Aj(A.,)(k). The update >
equation is '0:

Aj.. )(k - 1) = PA,,.Il(k +I k)x wEK

P1_ 2 ;{ ( + 1)R-v,,,.(k + 1)} (12)

where 0 is a normalization coefficient, the vjk.,, are the 215 5 Ti ,0
innovations processes arising from the Kalman filter tuned to the
J(k + l:i) model, and A, represents the consistency updated Figure 1. Filter StateEstimateErrorVariancePerformance
likelihood value. IV SUMMARY AND CONCLUSIONS
Combined Estimate This paper presents a new sub-optimal filter to be used for the

The combined estimate C(k) is obtained by using the nonlinear estimation problem in systems with piecewise linear
likelihood-weighted sum of the individual estimates, i.e. models in both the system and observation equations. The

k(13) approximations used are based on utilizing the switched-Markov
MA(k).iI)(k) (model for the system as well as on modifying the resulting filterhl

Aggreation with the physical constraints of the states of the model. Not all
facets of the filter are in final form, and work remains in the areaTo avoid expanding memory, it is necessary to reduce the of the exact formulation of the consistency update, as well as filter

number of filters at each time step. This may be achieved in a aggregation. Nonetheless. preliminary results show that the filter
number of ways including casting away unlikely sequences. may work well in a broad class of nonlinear filtenng problems.
merging similar sequences, or. the approach taken here,
systematically aggregating at the earliest time.

The technique developed for reducing the number of filters REFERENCES
required to M. is as follows: consider the collection of I. Verriest. E.I.. and A.H. Haddad. "Linear Markov
macro-state sequences ,J (k) to be the sequences (of length r) at Approximations of Piecewise Linear Stochastic Systems".
time k. that began in macro-state i, and progressed to macro-state Stoch. Anal. and Appl., Vol. 5, No. 2, pp. 213-244. 1987.
j at the next time step. Similaily. the notation ,J(k) indicates the 2. Ackerson, G.A., and K.S. Fu. "On State Estimation in
set of all sequences that began in macrostae k. The aggregation Switching Environments.' IEEE Transactions on Auromatzc
step involves forming likelihood weighted sums over the index i Control, AC-15. No. 1. Feb. 1970, pp. 10-17.
for each j, thus reducing the filter memory by one. 3. Bnmeau. F. and R.R. Tenney. "Optimal Smoothing and

=,A. , Estimation for Hybrid State processes." MIT/LIDS-P-1269.
if m . (hl (14) January, 1983.

The covanance is updated using the Gaussian sum approximation, 4. Tugnaic. J.K., and A.H. Haddad. "A Detection-Estimation
i.e. Scheme for State Estimation in Switching Environments",

Automatica. 1979. Vol. 15. pp. 477-481.
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Nonlinear Filtering for Piecewise Linear Systems." Proc.
and 1987 NATO AGARD Symposium on Guidance and Control.

, A.,, (16) pp 9-1 to 9-10, Athens. Giece. May 5-8. 1987



APPENDIX C

P. D. West and A. H. Haddad

Switched Markov Filtering for Tracking Maneuvering Targets

Proc. 1991 American Control Conference

Boston, MA. June 26-28, 1991.



SWITCHED-MARKOV FILTERING FOR TRACKING MANEUVERING TARGETS'
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Atlanta, GA 30332 Northwestern University
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ABSTRACT
A new filtering concept is presented for tracking maneuvering A primary difference between this work and that of [2] is that here.

targets. A conventional Markov switching process is used to model the in the underlying model, the system maneuver stale is a function of the
target maneuver process, but a new filtering scheme is employed. The system state. This fact is exploited in the filtering algorithm through the
filter uses a traditional track-splitting approach, with one Kalman filter consistency update stage. A consistency update occurs when the state
tuned to each branch of the tree. To limit filter complexity, aggregation estimate for the to model, j. is compared with the domain of the iA
is performed over the earliest timestep of an arbitrary filter memory maneuver command. If the acceleration component of the state estimate
length. Before aggregation, a unique consistency update stage is produced by a given filter is not within the domain of the (* region, then
employed where each of the filter's state estimates is compared with the the state estimate is said to be inconsistent with its maneuver state, and
associated conditional model for that filter. If the two are inconlstent, less weight is placed on that estimate.
(e.g. a large acceleration component generated from a non-maneuvering
model), less weight is placed on that estimate. Results ame presented
from a full 3-D tracking model. II FILTERING SCHEME

The filtering scheme applied here consists of maintaining one
Kalman filter "tuned" to each of the )W maneuver state trajectories.

I INTRODUCTION Thus, for each new observation, an entire set of A( innovations will be
The concept for the filtering scheme presented here arose from a formed-one for each filter. Next. the usual measurement and time

nonlinear filtering algorithm presented earlier [1]. In the nonlinear updates will be performed for each filter, producing A" covariance
filtering application, the nonlinearity was first approximated by a matrices and individual state estimates. Next, the overall combined
piecewise linear model. After that, a filter based on a switching model estimate, 1, is formed from the likelihood weighted sum of these )W
was developed. In the following work, the maneuvering target problem individual estimates. Finally, the filters are aggregated, and the
is naturally described by a switching system, allowing for the application conditional probabilities and likelihood functions are modified
of a similar filter structure. according to the consistency update stage. A detailed summary of these

Specifically, the problem at hand assumes that, given observations steps is provided here. Additional details of the algorithm may be found
y(k). it is desired to estimate the state x(k) of the system in [4].

z, , = Axi + F~w, + u, (1) Before describing the individual filtering steps, some additional
definitions are required. The Markov transition matrix, f. specifying the

where x. is the n vector representing the system state at time k, w, is a transition probabilities from maneuver state S, to S, is obtained from:
white, discrete time /-dimensional vector Gaussian random process with f = Prf11., I Qj I U E } (5)
covariance matrix Q, u~is a deterministic, but unknown control input, l~=ru~ 1 C£iIu

The a posterior probability that the system is in maneuver state i at
and r, is an n x I dimensional matrix. The observation model is given by time k may be expressed as

y, = Hx, + v, (2) / (k)= Z A, (k) (6)

where y, is an rn-dimensional vector which represents the observation at where J(k;i) denotes all M' - ' sequences at time k which end in

time k, and vj is an m-dimensional white Gaussian measurement noise macro-state i.
process with covarivnce R. Target Model

For the maneuvering target problem, we partition the acceleration The explicit state equations, assuming a I second update rate, are as
cn-nonent of the qte space into M regions. {4,i = I.....M. The follows:
model allows the system to jump from maneuver state (cotrol input) i 

'V 07to maneuver state j according to a finite state Markov process. J. In 02(pL 1i 0 0w[j +0order to maintain a *memory" of the Iant r time steps, a parameter J(k) is 0 1- 1 0II 0+W°  0
introduced, where 1(k) represents the set of the Af maneuver states, i.e., a a 0 0 1 w.

{/(k(pl =} I 1,, 1 .... I._j, 3
where p, v, and a represent the targets' position, velocity and

where acceleration, respectively. Although numerous coordinate systems exist
j,e (1,2,....M) (4) for target tracking, polar-spherical (measurement) coordinates have been

selected for this analysis. Using well-known [5] approximations, this
formulation leads to three loosely coupled state equations-one each for

where A. represents the maximum acceleration to be modelled. range, elevation, and bearing. This leaves us with three 3 x 3 systems
The optimal (albeit non-realizable) filter for switching systems was rather than one 9 x 9. The impact of this is more important. though, when

introduced by Ackerson and Fu in 1970 (2]. and consists of a the complexity introduced through multi-model approach is considered.
likelihood-weighted sum of Kalman filters "tuned" to each possible If N different maneuver commands are modelled for each axis, then there
switching sequence, and. hence, involves exponentially increasing are N3 possible systems for the coupled filter, and only 3N for the
complexity with time. Numerous schemes have been introduced to decoupled case. When a memory of M timesteps is admitted then we
reduce the filter complexity by casting away unlikely trajectories or have Mm' possible systems for the coupled case and only 3N for the
combining similar estimates (see e.g. (3]). decoupled case. If 5 maneuver commands, and a memory of 3 timesteps

am considered, the decoupled filter requires less than two percent of the
complexity of the fully coupled system. Thus, for the same
computational complexity, many more maneuver commands could be
added to the decoupled filter.

In summary, then. data are measured in the spherical coordinates.
tThis work supported. in pan. by the Georgia Tech Research range, elevation and bearing. Independent filtering is performed in each
Institute. internal research program E-904-033. and. in part. by coordinate dimension by the new filtering scheme. A single estimate is
the U S. Air Force Office of Scientific Research under grant produced in each of the three dimensions, at each timestep.
AFOSR-89-241



Consistency Update I RESULTS
If the variance of any individual estimate, Pj. k is small then the The filter was implemented on a digital computer using 5 maneuver

information provided by , may be neglected. In this case, these values commands per axis and 3 timesteps of memory. Further. a simple
are changed based on the position of the estimate ., 0 ,-Ak) in the 3-state, 3-axis Kalman filter was implemented as a first-cut bencinarik.

appropriate region 0, and used to update the a posteriori macro state The Kalman filter noise covariance parameters and the parameters of the
new filter were set equal. Realistic flightpath data were generated using

probabilities p,(k I J(- 1)). In turn, these are used in the next stage for the Air Force BLUEMAXII flightpath generator program, with the

updating 0,(k + I lk). If, on the other hand, the individual estimate F-16A aircraft characteristics file. Space here allows inclusion of only a
covariance is large, the macro state information is weighted more heavily single tracking performance example. For this example, the target flies
in determining the macro state probabilities. In this work, this updating along the X-axis at a speed of 500 fps until it reaches x=2000 feel At
stage was achieved through the following equation: this point, the afterburner is turned on and the target initiates a strong

l(k I J(k - 1))= a(PJ 1 )l,(k J(k - 1)) + climbing left-hand turn. In figure 1. the actual trajectory is highlighted
with an x on each data point. The trajectory highlighted with diamonds

{ - la(0 U,{i114, )(k)} (8) shows the performance of the simple Kalman filter, while the trajectory
indicated with circles shows the performance of the new filter. As can

Here. a(P) is a function of the norm of P which tends to zero as P be seen. the trmsient behavior of the new filter is superior.
becomes small, and which tends to unity as P becomes large. The
operator U,(x) is an indicator f inction that is equal to unity if x e "k, and
is zero otherwise. Filter Pertormance
Time Update

The macro state probabilities are updated by using the consistency
updated values di together with the transition probabilities. . • True ro ectoi

7 New Filer

,,1,,1k + 1 I k) = 5j(k I J(K - 1))A, _ -)(k)I,, (9) 7=1 Ne _

Time updates of the individual state and covariance estimates are
achieved via the standard Kalman filter equations for the appropriate ,,
models.Iw
Measurement Update

As above, the individual state estimate, the innovations, and the
covariance may be calculated using the Kalman filter for the appropriate
model under consideration. The question now is concerned with the .

measurement update of the macro state probability estimates. This can 2
be accomplished by using the standard likelihood function for a
switched-Markov model. The expression for the a posteriori
probabilities in this case will be proportional to the likelihood functions
Al,. lk). The update equation is

AO. (k + 1) =PA,j)(k + I I k)x Figure 1. Filter Performance

ex 1  ) + l)R v,0, 1 ,)(k + (10) IV SUMMARY AND CONCLUSIONS

r iThis paper presents a new filter to be used for tracking maneuvering
targets. Not all facets of the filter are in final form, and work remains in

processes arising from the Kalman filter tuned to the J(k + l;i) model, the area of the exact formulation of the consistency update, as well as
and A represents the consistency updated likelihood value. filter aggregation and filter tuning, or parameter selection. Nonetheless.

Combined Estimate preliminary results are promising. Clearly, the next stage of the research
should address benchmarking the proposed filter against some other well

The combined estimate f(k) is obtained by using the accepted multi-model filter such as the interacting multiple model filter
likelihood-weighted sum of the individual estimates, i.e. [6].

*(k) 1: A,,A ,,A)
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PREDICTION PROBLEMS OF MIXED-TYPE
OBSERVATIONS

D. R. Shin and E. L Verriest

School of Electrical Engineering
Georgia Institute of Technology

Atlanta, Georgia 30332

Abstract-The filtering, smoothing, and prediction prob- note the class of square integrable (local) martingales by
lems for mixed-type states and observations(continuous plus A 2'(,P)(resp. .M,(7,,P)). Assume that the signal and
discontinuous) are considered. Normalized and unnormal- observation processes have the following representation
ized forms for the corresponding three types of estimates are
obtained, which are formulated in the unified frameworks. X, = Xo + f du + t + H.,

1 Introduction Y, = fjhdu + W, + Nt.

where ft and ht are square-integrable Y-adapted processes,
Elliott and Antonelli [1,21 discussed the smoothing and M,,W, E X 2(7,P) with < ;fW >g= t, and , and NR are

prediction problems for Wiener-type observations in terms integrable counting processes such that
of semimartingale decompositions and measure transforma-
tions. Analogous problems for counting observations were M, -] - 6du E . 2(r,P), (I)
treated in [3[ and [41 independently. We extend these i, as
to general estimation problems where both the signal and
the observation consist of Wiener processes and counting q, = o XAdu E M 2(1,P). (2)
processes, and moreover there exists dependence between where -ft, A, are square-integrable non-negative I-predictable
signal and observation noise. processes. We assume that there exist I-predictable pro-

For the nonlinear filtering for these types of general prob- cesses at, Il such that
lems, Gertner[5 obtained optimal conditional expectations
based on a measure transformation and a Fubini-type the- < M,W >,= Iadu,
orem. He constructed a new equivalent reference measure Jo

under which he derived normalized and unnormalized dis- -. N
tributions directly from the definition of conditional expec- [Hr, ]f, = [P, 1, = Jfod(+. = / o J .du.
tations and Bayesian formulas, not relying on innovation Ne w debe a measure transformation which plays
methods and appropriate transformations.Based on Gertner's general model, we will obtain nor- a key role in obtaining the unnormalized distribution.

Base onGerter' genralmode, w wil obain or- Define a measure Po equivalent to P on (f), jr by
malized and unnormalized estimates for the smoothing and
prediction problems in a different way. Our approach is first dPo = ep[- f Th dW- f h2dU- T 'n(A.')d 1+ A.-)d. .
to derive the normalized forms using innovation methods, -0
then the unnormalized forms indirectly, and finally direct
derivations of the unnormalized forms will be made. This By Girsanov's theorem, P is absolutely continuous with re-
paper shows a unified approach to general nonlinear estima- spect to Po with Radon-Nikodym derivative
tion for smoothing and prediction problems.

One example of such a mixed type observation was given dP ,dPo. = m r Idw - frh2d,
by Hoversten et.al. [61 who considered that in optical com- 7p-; = -pS - =  po 2 - h
munication receivers, the detector output currents could be 7 r
modelled as stochastic processes. Those processes contain +f ln(..)dlN. - o - 1)dul.
doubly stochastic Poisson processes due to photoelectron

and dark current and a Wiener process due to thermal noise, where W = W + f hdu. It can be shown that
General terminology and assumptions are presented in 1 +

the next section. At = ezP[o'h "' f h~d,+J ln(A.)dNu.-(A.-1)du

(3)
2 Notation and Preliminaries is a (7t, Po)-martingale such that

Let (fl, 7, P) be a complete probability space and let At = E0dP .
{),t E [0,T} be a nondecreasing family of a -fields of

7 such that I is right continuous and 7r contains all null Furthermore by the differential rule, A, satisfies the integral
sets. All stochastic processes are defined on (fl, 7, P) and equation
a finite time interval O,T}, and are scalar-valued. We de-

At = 1 + f A.h.dW. + f ._(A, - 1)d(V. - u). (4)

Acknowledgement: This research was supported by US. Then under the measure transformation the observation pro-
Air Force under contract AFOSR-89-0241. ceases are simplified.
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h./o+ du E W(.MPo), for integrable, It-adapted processes ht and a,, and an Yt-
+o predictable process A,.

f' Next is the general martingale representation when the
4, +f (A. - l)du = N, - t E XM(1,,Po). filtration is generated by both Poisson and Wiener proc0, [7,op2461

Note that 
17, p2461.

< W >=< W >= t, (41, = Me] = N, = Re. Theorem 2:
Let Me M- (Y,,P), Y, = a(W.,N..s < t)./(P null

under both measures. Similarly, the signal process is also sets).
changed under the new measure PO Then there exist Yt-predictable processes K, and , with

II'. + R s < oo, such that
M, + fo t E p0 ), M, = Mo + fa K.dV. + JORdq.

Q1 = Q, + 0(A,. - 1)b.du E W2( ,Po). where q, = N, - t.C

Thus under P0 the signal and observation process are of the We are now in a position to derive the following optimal
form estimates, i.e. the conditional expectation of X given the

X= = + f -+ bdu observation a-fields:
+10 fodu -j, hadu +- M +10 for the fiering case k, = l,(X,) = EX, I Y.]

for the smoothing case II,(X.) = E[X. I Y /(s < t)
-- f ,bdu + Q, +] y~du, for the prediction case II,(X,) = E[X, I Y.](S < t)

Jo ,For the filtering problem, Gertner [5] derived the normal-
Y = Wt + N,. (6) ized and unnormalzed equations directly from the defini-

It is also known that X has the same distribution under tion of conditional distribution and Bayesian formulas under
either measure [7). the transformed measure. We take alternative approaches

The following theorem(Fubini-type theorem for stochas- through two steps, i.e., the innovation approach with semi-
tic integral) is of critical importance in the derivation of the martingale decomposition method for normalized forms [I]
optimal conditional distribution. It provides conditions for and then the measure transformation approach for unnor-
interchanging conditional expectation and stochastic inte- malized forms (indirect derivations) [2). For smoothing and
grtion [51. prediction problems we also include direct derivations of un-

normalized forms [3,51. All detailed derivations are included
Theorem 1: Let in the appendix( A-i through A-9).

Mdv, X '(Tt,P), a(Y;, = (,< t).

Then * 3 Filtering
ElM, I V =  o" adv. (7) Rewriting (1) and (2), we have the , -semimartingales

where for -a signal and an observation process
whee "<MV>, - d (.

7V>X, = 0+ o f., + o - + 4,+()

is an Trpredictable process, and at is a ;,-predictable pro-
jection of a onto ;, such that " = W + N, = f' .d + f, A.& + O ). (10)

Ef r ad<V>.<c. The filtering problem is to derive

Asspecial caes, (1) if M.LV then EIM, I ;,1 = 0.
(2) if!f is a square-integrable Y-predictable process, and , where y, = a(y., a _< t) = a(W.,N.,s :5 t). Noting that
and 9(t > a) are conditionally independent given g., then #, - 1' 1d - fo %du is a Y,-innovation martingale, it can

be represented as the stochastic integral with respect to the
Elf /-dV- 9,1 - (8) innovation process which has two components ( for a uniqueo .() representation refer to [7. p264])

where ), is the predictable projection of f, on .. Q= - f' &dU,

Since independent increment procemes W, N satisfy (2),
we get known resultsaS,]: A = N -f f du. (12)

El hdW. I ,IV1 = 'Elk I 77]dW., Elliott i1 observed that for continuous-type state and ob-
servation

El /A.d I )/ = j EIA. I t.-l., E[Xiy, I Y.] = y.,E[X, I Y],l = i,,
fo t .is a Y,-semimartingale and so its decomposition, as the sum

Elfo ad I TO W -, EfZa " I )r"']du, oaf a artingale and a bounded predictable process, is unique.
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Then he obtained two representations for ky. , compared + (A)- 1[IXoA,) - fl,(X)I,-(A.)]dq. (17)
bounded variations parts, and finally got filtering formulas.
Applying this idea to the general stochastic equations (9) For the unnormaized form, by the Bayesian formula
and (10), the resulting normalized filtering formula is of the Eo[XA I YI .,(X.) '.(X.)
form(see A-1) II,(X.) = E[X. ,] o -I Y - _,(. _,,(_.)

I ] = u,(1)

F[,(X.) = I-o(Xo) + J [II.(/) + ,)ldu is obtained. Again, applying the product rule to a.,A(X),

J we obtain the unnormalized form for smoothing (see A-5):
+ [I ( X , h ) - rI (X .)rI .(h . ) + n . a ..) + =f ,f ,

, .(X)= G,..(X.) +1 a..MX.A,)dWu+] a..((A.-1)x.)dq..

(13) Notice that this is a linear equation for a,,,. Alternatively,
where fI,_(A,) heuristically implies the predictable version (18) can be derived from the definition ao',(X,) = Eo[X.A, I
of that conditional expectation. This approach is a little Y11 by representing X.Aj by stochastic integrals and taking
different from ones taken in [7,81 and will be used in later conditional expectations under Eo (see A-6).
developments.

This equation can be simplified by introducing the ref- 5 Prediction
erence probability measure PO under which the observation
process become simple. The resulting equation is the linear The same procedure can be applied to derive the condi-
unnormalized conditional expectation. From (4) and the tional expectation of the form
Bayesian rule, we haveII,(X,) = E[X, l Ywe h Eo[AX, I Y] = a,(X) IT.(X,) = E[X I Y.] (19)

Eo[A, I Yj a,(1) where 0 < 3 < t < T. For fixed t, TI.(X,) is a Y. -martingale

where a,(X) is the unnormalized conditional expectation, so it has a representation of the form

Eo is the expectation with respect to Po , and at()(= ) i.(X) = I-o(X) + / K.dv. + f Rujd.  (20)
satisfies (see A-2) 0 o

where KO, R,,, are integrable /. -predictable proceses. For

ffI= 1 + f ,h[dW.+ r.-A.. - 1) dq. (14) conveience of computation of the gains K.0, R,, an aux-
(1) o o iliary process Z. = E[X, 1 11,0 < a < t < T, is introduced,

Applying the product rule to at(X,)(= a,(1)TI,(X)) gives which produces rl.(Xt) = E(Z, I Y.I. Computing the
, we can show (see A-7) that

u,(X,) = o+o(X,) f'a.(+jX. + .)dW. rI(X,) = rlo(X,)+f/[rl(h.X)-rl.(X,)fl(h.)+TlL(.)]Lu

+ f a,,u-[(A. - 1)X. + buA.]dqu. (15) +Ao'[._(A,)1- [U.(A.X,)-IL_(X,).. . . C.)Idu.

An alternative approach obtains (15) directly from the def- (21)
inition ac,(X,) = EO[AX, I /NJ by representing AX, by a Using the Bayesian formula to get a simpler equation yields
stochastic integral and taking conditioning[5J. ______ I Y.1 _ ar,___

Remark: In [51, Gertner first obtained at(X) and then Tl.(X,) = E[X, Y. I E[X,. I Y. = u,'(X) = o,,,(X)
derived 11(X) by the product rule. Thus he could avoid the or

proof of the existence of martingale representation theorem. E61Z I Y.1 at. (Z.) a,.(Z.)
.(X,) = E[Z. I Y .) - F [A. I Y, _ o.(,) a=.(4[)

4 Smoothing (22)
By a similar technique (see A-8),

The smoothing problem can be solved in a manner sim-
lar to the filtering problem. We consider the conditional a,.(X) = O,o(X,) + fra,,.(h.X,) + a,,.(a,)jdW.
expectation, IT,(X,) = E[X, I ] ,where 0 _5 s _< t < T.
Notice that for fixed s, I1,(X.) is an Yt -martingale and so t(
it has a martingale representation with respect to the inno- + , ((Au - 1)X,) + a,- ( ',A.)]dq. (23)
vation martingale such that in obtained, where < Z, W >,= fo' .du, [Z, NJ, = f' c.d..

A direct derivation of (22) is also possible from the definition

,0.)= 1. (0) + K.,.du + /R.,;4 (16) a,.(X) = Eo[Z.A. I Y.] using the same approach (see A-9).

where K.,., R.,. are Y -predictable processes to be deter- 6 D
mined. The same procedure as for filtering results in a re-
cursive smoothing equation(see A-4) Starting with the general models of stochastic systems

t ( mixed-type of states and observations), we derived the
ITXM) = rr.(X.) + f [rl.(X.h.) - lI.(X.)Tl.(h.)]d',, normalized equations for filtering, smoothing, and predic-

tion of general stochastic equations using semimartinl.dP
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decomposition techniques. We also showed that the corre- Similarly, for A, applying the product rule to XtN,
sponding unnormalized equations could 'je derived in two
different ways(indirect and direct derivation). Notice that X, = -- X-(A,\du+dq.)+ N-.fdu+dM.+dH.]+ f,.du.
the same derivation methods result in similar structure in 0 J 0
forms. Thus the optimal estimation problems are unified in Conditioning on /t and using the Fubini-type theorem,
these frameworks.

7 Appendix +j f'1.(b.A.) + (Y, - martingale).
A-i: the derivation of equation (13)
Conditioning (9) with respect to yt (71, On the other hand, from (12) and (24)

IT.(X) = 1(XM) + jII.(f. + y,,du + mt (24) fl.(X.)Nt = f0rL_ (X.)d.+j tN..dL.(X.)+f dI(X), NJ,

where ni is a Y, -martingale and thus it has the unique Observing that d(IT(X),N], = R4dN
representation ith respect to innovation processes v, and fIn,.(X,)N, = Jo IfX)._()a,

= oK.,Ud. + f IP d.. I ,
JO + 0 J'rnLA.)du+f N.nL(f.+'.i)du+(Y,-.martingac).

for Y -predictable processes Kt, A. The uniqueness of decomposition yields
Remarks: the existence of rnt can be easily shown. And

in equation (24), the optional or predictable projections onto R,, =
observations, denoted by IT,(Xt) and rI't_(X) respectively,
should be taken. However, it can be shown that the follow- Finally, substituting K and RA into m, results in (13).
ing equality holds except on the set of dtdP(w) measure zero:

A-2: the derivation of o(1)
f -4(f.5 + -)du ft_ (f, + .)du Taking conditional expectations of At under Po and applying

Jfo the Fubini-type theorem,
Thus (24) can be identified under either projection. For
details, refer to 17, p253]. In what follows, conditioning on &[At"i +f'E0[A,. I Y.]dW+fE .(A.-) I Yu.dq..
34 implies the optional projection or predictable one as the 0
case may be. By using Theorems 1 and 2, this martingale The result follows.
representation theorem with respect to innovation processes
can be proved. Although vt and ;4 are Y.4- martingales, we A-3: the derivation of r(X.)
can not derive (24) by a direct application of Theorem 2 Fron, (14) and (24),
because in general, Y, D r(5 ,t),. *1. In 171, one way
around this difficulty is to take a measure transformation . fX) = III(XI)t
and under the new measure to get the representation with
respect to observations and then innovations. For details =no(Xo)+ f (X.)1,(h.)k.dW.+ _(I._)L- .]
refer to 7 ,p264].

To find K., applying the product rule to X9WI , +f i,[l.(f.)du + l,(' ,)du + K.d' + Rd,.

XW fW.(f.d&+dA7+df,)+f*X.(hdu+dF-u,)+faidu. +Kn(&.Lu+ff~~-1R.N

Conditioning on Ye and using the Fubini-type theorem, With straightforward calculations we get the equation (15).

EXW, I Yl = T,(X,)W, = /o fL(X..ddu + ffLu(,a%.)d A-4: the derivation of equation (17)

(., - martingale). Taking conditional expectations of XW, with respect to Y,,

This equation shows that I1t(X,)Y, is a special semimartin- it(X.)W = fl,(X.h,)du + (34 - martingale).
gale which is the sum of a Yl- martingale and a predictable
bounded variation process, and furthermore the decomposi- However, from (11) and (16)
tion is unique [1. Whereas, from (i) and (24)

d jfL.(X)dt; +jd W.dr(X.)-fd < 11(X),W >.. IIIXM) W, = jf. LuXA~ hdu+f. du+(Y,- martingae).
Noting that d < f(X), W >0= Kdt, By the unique decomposition of a special semimartingale,

IW ,= at LX.I.(&)d, t K.du+(Yt -martingale). K.,. = IL1(X.h.) - TL,(X.)I.(h.).
Jo Jo Similarly, conditioning XN on ],

Since the decomposition is unique, comparing the bounded

variation terms, we have I,(X.)N, = Ij 9, _ (X.A.) + (_V, - martingale).

K. tL~x.(,i.) - .(X,)f.(.Q ) + f,(a,.). However, from (12) and (16)
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rl1 (X.)N, = rl.(X)N, + TL.-.(X.)I.-.. A)du fl. (X,) N. = jo rI... (Xa)dN. + /o N.- dYl.(X,) + /o P-jdN,

+ f 'R.,j1,. (,du + (Yi - marti~ngale). f* n.- (X)IL(.X.du+j R.1L (A.)du+(_V-martingac).

Equating the bounded variation terms of two representa- The unique decomposition theorem given
tions of rl(X5 )N , R w= [I, ( ))]- 1[ L (Az,,)-_4 (X,)rL,, ( ,) + .,_ ( .A,)].

R..= [r[. (,)-[n,,-Cx.,.) - fl_ (x,)fl_ (A,)J.
Now,

Then the result directly follows.
fL,(A.Z.) = E[A.E[XI I I Y.]= EIAX, I Y.1 = TI(AX).

A-5: the derivation of equation (18)
From (14) and (16), Therefore, from K.4 and j, equation (21) follows.

U.A(X,) = 1.(Xo)i, A-8: the derivation of equation (23)

= f flu._(X )d ,,_ +/ id flT uX.)+ j~f l d[(X ),i]. From (14) and (20),

N n t,,.(X,) = fl.(X,). =Noticing that

d[(X.), !I. = n.(h)LK.,.-du + L(Tr.(.) - 1) R.,.dN., l(X)+f i._[K.s&'.+R.,W. j u_.(X,)d!.+fo'dl(X,), ]..

With some manipulations, Observing that

ff.,X(.) = nl.(X.)4 + j',LrL(X.h.)dW. d[II(X,,i]. = lu(h.)K.,du + i_(.4,(A -1 .,

- with some computations, we get the equation (23).

The result immediately follows. A-9: the direct derivation of equation (23)
From (22) and the product rule,

A-6: the direct derivation of (18) ZA. = ZoAo + Z._dA, + f 4..dZ. + d[A, Z..

X.A4 =[X.A'hX. +A .- )dq']" Note that under P, [A, Z]. = 0. Applications of the Fubini-

Therefore type theorem gives (23).
o.(X.) = Eo[X.A, I Y.]
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ABSTRACT U. ASYMPTOTIC BEHAVIOR OF A NEAR DECOMPOSABLE

This paper considers a singularly perturbed hybrid system whose FSMP

state equations depend on a near decomposable finite state Markov In this section we summarize the asymptotic behavior of a near de-
process with fast transitions. The limiting behavior of the fast and slow composable FSMP. Since the proces r(t) satisfies the MSST (multiple
mode subsystem for the duration of intervals of fast transitions within semutability)condition(2], it has only two time scales. In order to con-
each group is investigated. The results are shown to hold when the struct an asymptotic approximation of the proce r(t), one establishes
process is near decomposable, ergodic, time-reversible and stationary, the following proposition:
and the values of the system matrices within each group commute.

Lemma I Letg[ r= llm-. ezp(F!). ThenI. INTRODUCTION AND PROBLEM FORMULATION n = diagfl .  ,, 6] T

This paper examines the limiting behavior of a singularly perturbed With fl, = 1 E, j = I., N, for some n1 -dimenuional row vector
hybrid system with switched parameters which depend upon a near E, Such that E, = (e Ci.. and Ej • 1, = 1.
decomposable finite state Markov process (FSMP). The state space of a Furthermore, define the M x N matriz V and the N x M matrx U
hybrid system is a cross-product space of a Euclidean space and a finite- as follows:
state space. Basically, hybrid systems are linear, piece-wise constant,
time-varying systems, which are switching among a finite number of V = diag( -.i.N], U = diag[Et.... EN]. (4)
constant realizations. Hybrid systems have already been considered, hen
and their properties are well documented[l]. The use of the aggregated VU = ', uv =
models to describe global features of singularly perturbed FSMPs is where I is am N x N identity matrix.
studied in (2]. Preliminary investigation of singularly perturbed hybrid
systems and singularly perturbed FSMPs is reported in (3]. Here we We now use rl, V and U to construct a uniform asymptotic approxi-
extend the latter results, but consider the decoupled case where the mation of the process r(t) as shown in the following lemma:
switching is a near decomposable FSMP as discussed in (4].

The system models under consideration are assumed to have the Leinnia 2 Assume that 0 < e c 1, then
following state equations: P(t) = ez F(t - to)/c)+

-i(t) = A[r(t)Jr(t) (2) Vezp(UGV(t - to)U -+o(1) (5)

where ji > 0 is a small parameter, z(t) E R" represents the slow mode uniformly vldi for t > to.
of the system and :(t) E V1 the fast mode, the process r(t) is the Obviously, when e - 0, the proce r(t) can be replaced by an
form index which takes values in S = {1, 2 ...... .'W1 and determines the aggregated proces F(t) taking values in S = {1...,NI. Let P(t) be
system model at a particular time. The proem r(t) is modeled a an the transition probability matrix of the process F(t). Then
FSMP which contains N groups of strongly interacting states, where
group j consists of n fast states and E n1 = M. Matrices A,[r(t)] P(t) = ezp(UGV(t - to)), for t > to (6)
and A2[r(t)] are random through their dependence on the values of the
procem r(t). The current values of A(r(t) is denoted by an index, and UGV is the generator of the proem F(t) and
for example. for i = 1,2, A,, will denote A.[r(t)] when r(t) = m E P(t) = V(t)Uor t > to (7)
group j, j = I.N, ne = ... nj. Let the evolution of the process
r(f) satisfy Note that the process F(t) is stochastically continuous and has a single

dP(t) ergodic clas such that
- = P(t)(1 F + G) (3)= f (im P(t) = I. (e,..., el,] (8)

where P(t) is an M x M transition probability matrix at time t. It is

assumed that 0 < c < 1. matrices F, G and ,F + G ae generators Thus Equation (7) can be interpreted as follows:
such that the process r(t) has a single ergodic clam. Furthermore, let
each of the N groups be a FSMP with a single ergodic time-reversible Prr(t) e group jr(ta) = k E group i)
clas(5. The generaitor of the jth group F is the jth block in the block- = -Pr(FQ) jI(to) = :1 +o(). (9)
diagonal matrix F. This paper considers the stationary cue, namely
that the process rft) has reached its steady state, for t > to and

The following is the outline of the paper. Section II summarizes
asymptotic behavior of a near decomposable FSMP. In Section III, lim Pr{r(t) = mr C 2,P .

I Q0the approximate model i,(t) for the slow mode subsystem zi(t) for
the duration of intervals of transitions among the fast states of group Ir(lo) = k E group i} = ej • ei. (10)
j is derived. The probabilistic averaging procedure is adopted. The
mean-squared error between ij(t) and z)(t) is studied. In Section IV, where ej,, is the component of the ergodic probability vector e, corre-
we study the linuting behavior of the fast mode subsystem when both sponding to state m.
ji and e tend to 0. 3ection V considers an example to illustrate the Furthermore, if we express (5) in the fast time scale r = (t - to)/,
methods used in Section III and IV. Section VI concludes the paper. we obtain

'Thim rawrjh sup p red by the U. S. Air Forev undr puia AFOSR-89-0241. Lemna 3 Let r = (t - to)/e. We have
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P(r) = P(cr) = ezp(Fr) + O(e). (11) Meanwhile. 1(r) al.o satsfies a weak law of large number such that

Similarly, the equation for the transuition probability matrix of r(r) 6e. Y() 1 . (20)
comes r

dP(r) = P(r)(F + cG) (12) For proofof the above Lemmas one can see see [2], [p. 118, [5 ] and [7].
77 The centsa limit theorem is useful in that we exploit it to derive

From (11) and (12) it follows that the influence of weak interaction eG the approximate model of the slow mode subsystem.

in(12) will become significant after a long period of time r. Assume Il1 SLOW MODE SUBSYSTEM
that r(0) E group j, then we have

Pr~r(r) = n E group jfr(0) = in iE group i This section considers the limiting behavior of the slow mode sub-
system. Let zi(t) denote the state of the subsystem when r(t) takes

: , + O(e) (13) values in group j. The trajectory of zi(t) is based on writing the solu-
tion of z(t) as a function of the fast states in group j for the duration

where p?,. is the (in, n)th element of ezp(Fir). of the intervals of transitions among the fast states of group j. The

In this work, the steady-state distribution of the proces r(t) will solution zj(t) can be considered as a standard state equation solution
be needed. This probability, from (10), is defined by ejein j = of a time varying linear system. The time varying nature stems from
1. N, m = 1.ni. Henceforth, it is assumed that the process the dependence of the system matrices on the different values of the
r(t) has reached its steady state, i.e.. fast states of group j. In what follows we use probabilistic averaging to

derive the approximaie model for zj(t). Given the group of the pro-
Prfr(t) = E group A = ejej,, (14) ces r(t) (i.e., group j ) and the state of the systems (1) at time t (i.e..

With the above assumptions, we conclude that in the fast time scale zj(t)), the expected satwe at time t + A where A is of order e is to be

r, 0 < t- 1, jumps among different groups occur after a very long computed. Thus

period of time r so that the following results ae obtained: i(t + A) a Ef{.(t + A)Ij(t) E group j}

Lemma 4 Since group j is a finite ergodic stationary time rev.ribe "I
Mark., chain, then the expectation of A~r(r)J in grop) j is 'w by =~epA,.)c~~e),t

Ai E{AC[r(r)]fJr(r) e group j} Minl

= C *,. (15) ) (21)

id its jt oo, riance fund., From Equation (2 1) one deduces the dynamics of i (t) as -

ci(r) = E[A,[r(r)]A[r(r + s)lr(r) ij(t)

- lim E[zi(t + A) - (tr(t) e group l/A
and r(r +a) E group lG )2

-A

.M.l nu

We next consider the additive process

"( At where Al is the statistical average value of Aj[r(t)] when r(t) switches
( = At [r(a) G group j... (') among the fast states of group j. In what follows we shall show that the

mean-squared error between ij(t) and zi(t) tends to zero as e tends to
For large t, we would expect that the process Yj(r) is asymptotically zero.
normal in distribution, and satisfies a central limit theorem. Before
doing so, the next lemma is required: 1'liemi 1 Suppose that A,' AJ . = A.Al, m,n n E nil end

Lernma 5 Let eJD Fj, the fundamental matrix of group i snd Ci be ,i tal.Te
defined as follow lim ElE(t) - Z,(t)112

eJD = diag(e .. e,.,], j = (F... r(s) r group as e [t0, tl - 0 (22)

F4. =I -(r..(r) -e.)d,r where II II denotes the Euclidean norm.

and Proof Assume that the process r(t) switches to groupj at time t o. We

express the systems (1) in the fast time scale r = (t - to)/e to obtain

C, = j (,)d,. = (A,. .. ,1 X,(r) = -Al[r(r)JX,(r), X1(0) = zj(to) (23)

[eoF® I..][(A',) . (A, 5 ,)T]T (18) With the assumption that AJ,.AJ,= AJ, .AJ, we have

where ( denotes the Kronector product(J6. Xj(r) e f.'<,)*w'- , (to)
Then C, is strictly postme definite unless AI_ is independent of m

and C, is :ero if AJIM to independent odf m. = ee,(:)zj (go)

The positivity of C, has a natural meaning in that it corresponds to On the other hand, we express i,(t) in the fast time scale ast h e v a ri a n c e o f Y ( ) i n t h e c e n t r a l l ir i t t h e o r e m . f , r ' " r j t )( 4
Lemma 6 Let Y,(r) = f' At[r(a) E group J]ds. Then Yj(r) u ismp- X,(r) = eA;"z(t) (24)
totically normal in distribution for large r and satisfies the central limit To prove the theorem, there are two cases to consider:
heorem, i.e., Case I.- Let A,'. depends on the value of m. The difference between

Y, (r) -N X(A r, 2C, r), as r - co. (19) X,(r) and X,(r) is given by
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:r- i(,-'+) = ([ frA ') - 1]eA ,(ta) (25) Theorem 2 Assume that 1i: o(e) and lim__o4 / -0, all the values

For a given t, r - ao as e - 0. It follows that of A]m are Stable. and r(to) = m E group 1. Then s ! - 0

-I () = exp(A;,(t - to)/):i(to). for t > to. (33)
-" 11(13)

Case. I. A = O(e) and lim.-oi/c - k where k = O(1),
trace Ee t  In this caue we have

CP(C) = p(9)(kF + 0(()), P(O) = 1. (34)

From (34) it follows that , in the stretched time-scale 9 am e - 0,
=O(e) no jump* occur among groups and r(f) stay$ within group j when

r(0) = m e group j. While r(t) takes values among the fast states
and Ilis":]l < 0. Hence, of group j, then :i(t) behaves approximately as any time invariant

systems with constant system matrix held to their values at the last
£tlIX!(r) - "%(i ) E group j.a 8 E [ta, tfl transition. The following theorem addresses the problem for the came.

-O(e) (26) Theoremn 3 Assume that Pi = 0(e) and limq...o /e - k where k

Taking the limit c - 0, we observe that the right-hand side of Equation O(1). Denote

(26) tends to zero. A change of variabie yields the result. ",

Cae 1; Let Al. be independent of m and A24. = AJEm = 1.... AI= A,..e,,.
Lemma 5 then yields

A; =A) and C, =0 Then

Obviously, .,(?) = X,(r), i.e., there is no error between f(,(r) and 1. Ia t retched time scale 9, Z :(#) is app rmaely modeled as

Xj~~r). on 11t0901mo01 hybrid Syutem (29) depending 0*lp 0n tht fast

The resulting approximation implies that the slow mode subsystem sates, of group j, whose transition probability maint, u given by
can be approximated by a hybrid system depending on the aggregated
Markov chain F(t) taking values in S. The system model of the hybrid P'(6) = ezp(Fike)
system at a particular time t is a statistical average of the system
matrices over their values based on the group that the procem r(t) . If the values of Al are stable, then tie solution of zi(t) Ls ans-
takes. formly as mptot cally stable.

IV. FAST MODE SUBSYSTEM Note that logarithmic norm(l] can be used to check the stability con-
dition of A .
Case II. is = e"where 0 < a < land lim o/e- co.

In this section, we study the limiting behavior of the fast mode Similarly, we have
subayueem i(9susse;d )= P(*)(--.L_ F +,p0, P(0) - 1. (35)

i(t) = A2(r(t)]z(t) (27) do 1 -(

Assume that JIAI,,j. = O(l), j= ..... m=, ... , 1  and that which implies that transitions among the Markow stams within groups
r(t) = m E group j. To analyse the state x(t), the stretched ize-scale an vy fast and that transitions among groups am very slow as 9 - 0.
0, where 0 =(t - to)//p, is used. Hence, expressing the sstems (27) il Thus, r(9) only takes values oftgroup J if r(0) = m Stoupi and Z (0)

the stretched timescale 9 yields an he approximated m an averaged system with a coustant system

i(f) -A(r(9)JZ(9), Z(0) - 90t)- (28) Theren 4 Suppose that p = e Where 0 < a < I end lim.-. u/e -

Simila ly. the equation for the transition matrix of r(O) becomes o and r(to) E group j. Assum that all taes of A) commute via
each ether nd are stable. 2Ten

dP POF) P
T-=p(9)(- EG), P(0)=I. (29) i. ZJ(8) can beappm ted asa e o-dsten whse dawm-

The limiting behavior of the system (28) depends on the relative size
of isand e they both tend to ser. There we three cases to consider: * , (0)=x,(te) (36)
Case I. # = o(t) and lUm-o 0 -0. . =
In this case we haveIn this e Th mea-squared error between Z 8() and 2,j(#) tends to :eraM~e)

TW = 0(e), P(0) = 1. (30) s f tends to zer.

Thus, in the stretched time-scale 0, the transition probability matrix 3. Th solution of Z, (9) is uaiformly asymptotically stable.
tends to a constant. Since P(O) is an identity matrix, we observe
that transitions among states of the prom r(9) am very slow, i.e., V. AN EXAMPLE
r(0) = m egroup j implies r(a) = m c group j for all 0 when e - 0+ .
Under this condition the system matrix for the stats variables z(t) is An example to illustrate the method in Section I and lI is demon-

AJ,. when r(0) = m E group j. Similar to Section II, the solution of strated here. The system is given by (1)-(2) where
Z,(t) of (28) is

Z,(9) = ezp(A),.):(to) (31) Ah=[ 1- 4 -
which when transformed to the normal time scale t yields A4, = , A. = -4

:i(t) = ezp(A2 ,,,(t - to)/p)Z,(to), for t > to. (32) -

If all the values of A4,- are stable, then :1 (t) can be approximated by A2 I= r-6 3 1A22 [ -2 41
(32). The following theorem summarizes the case. 1.5 -12 2 -0

'57



A2-r .1 4 -10 2 [5) J. Keilson, Markov Chain Models-Rarity and Exponentially. Spring,
.21 - - 2 -.4J '2 [ 4 -6 New York, 1979.

[6] J.W. Brewer. "Kronector Products and Matrix Calculus in System

and the FShP (t), shown in Fig.1, which consists of two groups. each Theory,"IEEE Trans. on Circuits and System, CAS-25, PP.772-

of which contains two strongly interacting states, has the following 781 Sept. 1978.

generators: [71 J. Keilmon and S. S. Rao, "RA Process with Chain Dependent

1 1 0 a 1 Growth Rsaa,"J. AppL. Prob. 7, pp. 699711, 1970.

F 1 -1 0 [81 N. Jacobson, Lie Algebras, Dover Publication, New York, 1978.
F= 0 0 -2 2

0 0 3 -3

[00 0 01

2 0 0 -2 1

Hence, from the definition of A) nd A;, j=l.2, we have

A[ -2.5 2.5 , -6.4 1

A2- [-4. -* ~ 88 1.8111 31.2 .S -.

Fig.2 and Fig.3 show the sample trajectories of zt(t) and il(t), F1g.1 The Process r(t)
when the initial conditions z1(0) = [2.0,3.017, under three cases: (i)

o = 0.1, (ii) e = 0.01,(iii) e = 0.001. Obviously, the error between
z I (t) and - I (t) is smaller as c becomes smaller. Similarly, Fig.4 shows
the sample behavior for z 1(t) and 1 (t), with zi(O) = [2.0,3.0

r 
and

c = 0.1. The errors do become smaller when 4 goes decreases.

VI. CONCLUSIONS

This note considered the limiting behavior of a singularly perturbed
decoupled hybrid system whose state equations depend on a near-
decomposable finite sat Markov proem. The limiting system be- iit(t)
havior of the slow mode subsystem for the duration of intervals of fast -----------

transition within each group can be approximated by in averaged value (-t)

of the system matrix over all their values based on the fast states of 2.5 - .Or

the group. The limiting behavior of the fast mode subsystem fot the

duration of intervals of fast transitions within each group depends on
the relative size of jt and c when both i and c tends to zero: (i) the e 0.001

system can be approximated as a time invariant system with the con- ..............

stant system matrix held to the value at the initial transition when 01,
is = o(), (ii) the system can be modeled as a hybrid system depending
only on the fast states of the group when # = O(e), (iii) the system
can be approximated as an averaged value of the system matriz over

all their values based on the fast states of the group when p = c0 where 1.5

0 < a < 1. The results need two crucial assumptions, the ergodicity
, stationary distribution and time reversibility of the process, and the

fact that the values of the system matrices within each group commute.
The results hold even if the aggregated process has an absorbing state.

Additional work is needed concerning the relaxation of the restric-
tions of commutation of the system matrices within each group. The
Baker-Campell-Hausdorff (BCH) formula (1,81 appears to be a promis-

ing feature in this direction.
Finally adapting the results of the note to the mote general singu-

larly perturbed (stochastic) hybrid systems where the switching is a 0.5

near-deeamposable finite state Markov chain may be umeful.
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ABSTRACT

This paper considers a singularly perturbed hybrid system whose

state equations are governed by a stochastic switching process, which 1.2 Problem Formulation

is singularly perturbed and is modeled as a near decomposable con-
tinuous time finite state Markov chain (FSMC). The decomposition The system models under consideration are assumed to have the

of the system and the switching process together into slow and fast following state equations:

subsystems is investigated. An approximate model for the slow ub- i(t) = A,[r(t)]z(t)+ A1 2[r(t)]z(t), x(to) = zn, (1)

system over the interval of fast transitions within each group is de-
rived and the mean-squared error between the model and the actual pi(t) = A21[r(t)Jz(t) + A2[r(t)]z(t), z(to) = z0. (2)
subsystem is quantified. The stability of the slow mode subsystem
is studied and two stability criteria are introduced. The behavior where p > 0 is a small parameter, z(t) E RP represents the slow mode

of the fast subsystem depending on the relative size of perturbation of the system and z(t) E R' the fast mode, and the process r(t) is the
parameters is analyzed. Finally an example is used to illustrate the form index (or plant mode) which takes values in S = { 1, 2. ....,m)
aforementioned techniques. and determines the system model at a particular time. All matrices

I. INTRODUCTION AND PROBLEM FORMULATION are of proper dimensions and are random through their dependence
on the values of the process r(t).

1.1 Introduction We further assume that r(t) can be modeled as a near decompos-
able FSMC which contains n groups of strongly interacting states,

This paper studies the asymptotic behavior of the trajectory of I where the ith group consists of ni fast states which form the subset
a singularly perturbed hybrid system whose state equations depend Si {N + i J - 1..., ni}, where AMi -_ -_kn, i > 2 and A, = 0.
on a near decomposable continuous time finite state Markov chain k-Note that " n* = m and J=1 S = S. The current values of the

(FSMC). The state space of a stochastic hybrid system is a cross system models are denoted by an index, for example, tA,, will de-
product of an Euclidean space and a finite discrete state space. Ba- note Ak[r(t)] when r(t) = j,j E Si, where k = 1,2,12,21. Let the
sically, stochastic hybrid systems are a special type of linear, piece- evolution of the process r(t) satisfy
wise constant, time varying systems which switch randomly among
a finite number of linear time invariant models. The switching be- dP(t) 1

haves like an FSMC. Such systems have been successfully used to PQ)(;F + G) (3)

model pilot commands in target tracking, isolation levels of solar
receivers, and systems subject to sudden changes in their structure where P(t) is an m x m transition probability matrix at time t. It is

and parameters which are caused by phenomena, such as compo- assumed that 0 < e -1 1, matrices F, G and I F + G are generators

nent/sensor failures or repairs, abrupt environmental disturbances such that the process r(t) is irreducible. Furthermore, let each of the

and changing syrtem interconnections in manufacturing systems and n groups be an irreducible and time reversible FSMC with generator

large scale flexible structures [I]. This paper is concerned with the Fi. The generator F is the ith block in the block-diagonal matrix

asymptotic approximation of singularly perturbed stochastic hybrid F. This paper considers the stationary case, namely that the process

systems when both the continuous states and the switching process r(t) has reached its steady state. It is also assumed that z(t), z(t)

are singularly perturbed. The study of systems of this type is moti- and r(t) are perfectly observed.

vated by new applications, such as analysis of singularly perturbed The behavior of the overall system depends on the relative size

systems containing quantized elements or on-off control [21, and sim- of p and e as they both are sufficiently small. There are three cases
plified filtering schemes for singularly perturbed switched parameter to consider : (i) p = o(c), (ii) p = 0(c), (iii) c = o(p). Furthermore,

due to the possibility of transforming the system with Eq. (1)-(2)

Singular perturbation methods in 14-61 are used in the paper to into a decoupled system, we shall focus on the decoupled case (i.e.,

decompose the continuous states and the switching process together Ai2[r(t)] = 0, and A21[r(t)] = 0), and then extend the results to the

into slow and fast mode subsystems. The methods alleviate the prob- coupled case.

lems of stiffness difficulties resulting from the interaction of slow The following is the outline of the paper. Section It presents the

and fast dynamics. Singularly perturbed FSMCs and singularly per- basic mathematical tools for the behavior of a near decomposable

turbed stochastic hybrid systems have been investigated by several FSMC and the properties of additive processes. Section III studies

researchers in [3.7-101. Aggregation methods were used to describe the limiting behavior of the decoupled slow mode subsystem. An
global features of singularly perturbed FSMCs 17-8]. In [91 the au- approximate model for the slow mode subsystem over the interval
thors developed aggregation and averaging ideas to deal with approx- of fast transitions among the fast states of each group is derived in

imation of stochastic hybrid systems in which the switching process Section 3.1 based on the aggregation method. Section 3.2 quantifies
depends on its current discrete state and the continuous states. An- the mean-squared error between the approximate model and the ac-
other study 131 examined the limiting behavior of a class of singularly tual system. The asymptotic stability of the decoupled slow mode

perturbed stochastic hybrid systems where the switching process is subsystem is explored in Section 3.3. In Section IV, the limiting be-
singularly perturbed and independent of the continuous states. The havior of the decoupled fast mode subsystem is investigated when
authors in [101 have generalized the results of 131 by allowing a much both is and e tend to zero. Section V examines the coupled case.

broader class of the switching process which consists of many groups Section VI considers an example to illustrate the methods used in

of strongly interacting discrete states. In [101 an approximate model Section V. Section VII concludes the aper.

for the slow mode subsystem within each group is derived base on the 1I. MATHEMATICAL PRELIMINARIES
probabilistic averaging procedure. Its accuracy is quantified with the
restriction of commutahility of the system matrices of all realizations This section surveys some notations and results concerning the

within each group. asymptotic behavior of near decomposable FSMCs, and the prop-

Our aims here are to apply the aggregation method to derive an erties of additive processes. These results play important roles in

approximate model for the slow mode subsystem over the interval of studying the asymptotic behavior of the trajectory of the system

fast transitions within each group of the switching process, to quan- given by Eq. (1)-(3).

tify the accuracy of the approximate model without the restriction
imposed by the proofs derived in 3,101, and, finally, to analyze more 2.1 Near Decomposable FSMCs

general singuiKirly perturbed stochastic hybrid systems. In the following the asymptotic behavior of a near decomposable

'Tii, r--h-,'h,. -,pp-t"- by ,. iJ. S. Air F ,rmn .*r"ant AFOSn--024 1 FSMC is summarized. There have been a number of studies in the



literature concerned with the asymptotic approximation and aggre- The values of cr.kl, i = 1. n, are positive [10]. For proof of the
gation of a singularly perturbed FSMC [7-81. The fast transient of
the process r(t) is formed of separate transients within the strongly above emma one sees [ a0r, [ uel, [12, pp. w18-121 .
coupled groups. Over a longer period, each group of the strongly The central limit theorems are useful in that we exploit them to

couped tats cn b trateda-%an ggrgat stte.derive the accuracy of the approximate model for the decoupled slow
coupled states can be treated as an aggregate state.subsystem.

Let the switching process r(t) satisfy the MSST (multiple semista-
bility) condition[61. Thus, two time scales is sufficient to describe the Ill. DECOUPLED SLOW MODE SUBSYSTEM
global evolution of the process r(t). To analyze the process r(t), one
neeLs the following notations (6,10] This section considers the asymptotic behavior of the decoupled

Let El = [ini o erp(Fr). Then slow mode subsystem given byI'1 = diag(l-h..... rlJ
where rL 1i • Ei, i = I. n, E is an ni-dimensional row vector i(t) = A,[r(t)]z(t), z(to) = xo. (11)

and Ei = [ejlJ,j E Si, and 1i is an ni dimensional column vector
with the same elements 1. Furthermore, define an m x n matrix V An approximate model for the subsystem over the interval of fast
and an n x m matrix U as follows: transitions within each group is derived based on the aggregationmethod . Its accuracy, mean-squared error, is quantified by using of

V = ding[l ... ,1,,], U = dieg[E1, . .... E]. (4) the Magnus Expansion from Lie algebra which is known as the con-
tinuous analogue of the Baker-Campbell-llausdorff (BCH) formula.

then VU = fl, UV = I, where I is an n x n identity matrix. Finally, the stability of the subsystem is discussed and two stability
For fast transient analysis of r(t), Eq. (3) can be expressed in criteria are introduced.

the stretched time scale r = to obtain€ 3.1 An Approximate Model

P(r) .
(5) In general, the state variables z(t) are not Markovian. However,

For aggregate analysis of the process, r(t) can be replaced by the joint process (z(t)T, r(t))T is a Markov process whose state space
an aggregate process F(t) taking values in S = n). Let P(t) is RP x S. lere we formulate the joint probability density function
be the transition probability matrix of the process f(t). Then the (p.d.f) of (X(t)T, r(t))T which is denoted by yii(l),
evolution of the aggregate process F(t) is governed by the following Pj(z, t)dz = Prob.{x < x(t) x + dz, r(t) = E Si}. (12)
equation, -

Recall that the process r(t) remains in the ergodic distribution for
P(t) = P(t)UGV, for t > to, (6) all t > to. Let

and UGV is the infinitesimal generator of the process 7it) . Further, pi(Z, t) = iieijpl (z, t), (13)
the relation between P(t) and P(t) is given b- s tso that by our assumption

P(t) = VP(t)U,for t > to. (7)

Note that the process f(t) is stocha-tiLaily continuous and has a IE. p i (x t )d x =  1, i E j E Si. (14)
single ergodic class such that Then define 17(zt)

T h e n d e f n e ( z t) = ( t z~ t . . . . ,,( Z , tj ) ) T 
.  O b v io u s ly , t h e

lim P(t) = I. [ . (8) evolution of Pt(z,t) is governed by a forward Kolmogorov's equa-
l W I tion (master equation) [13 ch. 3, 14, 15]. To simplify notation we

where ji is the ergodic probability of the aggregate process f(t) cor- introduce the matrix operator
responding to the state t.

In this paper, the steady-state distribution of the process r(t) will £* = diag{1Zj}, (15)
be needed , i.e.,

where each diagonal entry is described byProb.[r(t) = j E S.) = eiAei(.

2.2 Additive Processes ,  = 8S& A ik,p(16)

In what follows additive processes on each group of the process where (.)k denotes the kth component of the vector (.). Hence, the
r(r) in the stretched time scale r are introduced 110]. Earlier ma- forward Kolmogorov's equation is given by
jor w ks on additive processes appeared in [11,121. Let r(r) E Si. r(rt) 1
Define the fnction a! ki[r(r)] as the (kj)th element of the matrix PT + G
At(-r) E Sil. The current value of a!klfr(r)] is denoted by a 8 t-
when r(r) j E Si. An additive process is defined as follows: P(zo, to) given. (17)

= a4[r(s)Ids. (9) Because the exact solution of Eq. (17) is difficult to find, theS1 (9) singular perturbation method is applied to derive asymptotic repre-orasufficiently large r, one would expect the process i.,t to be sentations of Eq. (17). This approach does not require the explicitaor a lly l in wond t ti arce solution of Eq. (17), but rather, leads directly to asymptotic ex-asymptotically normal in distribution and to satisfy a central limit o 'I bbsci oI ~h h
theorem: pansions of 1(z, t). The basic idea is to let pY(, t) have the outer

expansion
Lemma I Let Y 1,(r) = fo Al[r(s) E Si]ds, and Y1,i,k(r) denote
the (kl)th element of the matrix Yl.i(r). Then all elements Yi.,kt(r) I(. t k t) (18)
are mutually independent, asymptotically normal in distribution for ( =o
a sufficiently large r and satisfy central limit theorems: where i(z, t) = (i etpkn(,

Y______ -l Substituting this in Eq. (17) and equating the coefficients of like
t.i~tt~r "powers of c, we obtain

0(- 1 rFT(,t =, #(.o, to) = ir(o, to) (19)
--_ N(O---), as r is sufficiently large, (10)f

where 0(1): FTp'(z,t)= Opo(z't) - £'P(z, t)
,O'.= - E(a 1 ,[r(r)JI r(r) E S,) = T-+r ,.a

-Grp°(z, t), pit(ro, to) = 0. (20)



where the symbol [.,.] is the commutator product or the Lie product.
O(fi ) : Fr= fZ t) £pk(z, t) To find the limiting behavior of the state transition matrix f(to,at to + 6) as c tends to zero, we treat the terms in the exponent sepa-
-GfTk(., j), p/(.0, to) = 0, k ,2,... (21) rately. Then, combining all these together yields

The solutions for Eq. (19) is f(to, to + 6) = ezp{A A6 + 6 ( 1 - /0 _I A,) + 0(( 2
)) (28)

lPj(,t) = /idx.t), i 1..n, j E S;. (22)
From Lemma l it follows that all elements of Y 1  are mutually in-

The solvability condition [16, ch. 151 for Eq. (20) is given by dependent, asymptotically normal in distribution with variance 0(e)

(p.)T( aO(t. O-  £p°(x, ft) - Grpo(Zt)) = 0, (23) as e tends to zero. Therefore, it is easy to verify

im Ellit) - ,(t)I2 } = 0, t E [to, to + 6). (29)
e-0

where
To finish the approximation over the intervallto, Ti] where T - to

Fp= 0, i =1. n. is the sojourn time of r(t) in the group Si. we choose a sufficiently
Define positive small number 6' and a positive integer K such that 6' < 6

and T - to = K6. The limiting behavior of the state transition
q n +j matrix 1(to,T) is computed by£ ,ZI t) TT - [(( F eqi 'Aij)-)Af,(x, t)]

k=1 j= I 9i lim 1(to,Ti) = lim f (to + K6',to + (K - 1)6')

With the notations ,, U and V, Eq. (23) can be rewritten in a,
matrix form ... (to, to + 6') = e' A K s ' = e'A.(Tj - to). (30)

tfp(zt) = &'(z,t) + (UGV)TJ,(z,t) (24) in the mean-squared sense. This implies that

where i(z, t) = (ii/ t (x, f) ... , ,P,(.T, t))T .  I : lm E{flIx(t) - i,(t)112} = 0, t E [to, Ti]. (31)
Eqation (24) can be interpreted as follows : Az,t) is the joint' C-0

p.d.f. of the approximate stochastic hybrid system Note that if Ti - to = oo, the mean-squared error at time Ti may be
unbounded even if e tends to zero. lowever, it is well known [20]i(t) = i[(t)]i(t), i(to) = ro. (25) that the irreducible FSMC, r(t), has a finite return time for each
state, i.e., T - to is bounded with probability one. The following

where 'A - e, 'Ai 1 and f(t) is an aggregate FSMC with; summarizes the result.
the generator UGV , and f(t) remains in the ergodic distribution for
all t > to. In other words, in the time scale t, as e tends to zero, Theorem 1 Suppose that all values of IAij, j E Si, are bounded.
each group of the strongly coupled states is aggregated to a single Then the solution xi(t) to the problem Eq. (11) converges in the
state and the asymptotic behavior of the state variables within each, mean-squared sense to the solution :i(t) of the approximate model
group is approximated by a deterministic trajectory of a linear time Eq- t251 as c tends to zero, i.e.,
invariant system.

To have higher order approximations, we need to solve for the lim E{llx,(t) - i(t)112} = 0, Z,(to) = i,(to)
solvability condition of Eq. (21)

P -: for t E [to, Ti where Ti - to is the sojourn time of the r(t) process in
(_ ) - _Cp (xt) -Grp(z,t)) = 0 (26) the group Si.

• Note that Theorem 1 does not show that the approximate model iswhere i = ,. n, and k = 1, 2, 1 valid over the entire interval [to,co).

3.2 Mean-Squared Error 3.3 Stability

In this subsection the mean-squared error between the actual In the subsection the stability of the decoupled slow mode sub-
states and the approximate states is derived. Let z,(t) denote the !system is studied. The stability criteria are based on the logarithmic
state vector of the subsystem when r(t) takes values in Si. The norm [211. In order to derive the stability criteria, a brief introduc-
approximate model has deterministic trajectories i(t) while r(t) so-
journs in the group Si. The method used to find the mean-squared tion to the notation of logarithmic norm is given as follows -

Definition: The logarithmic norm associated with the induced ma-error is based on the Magnus Expansion from Lie algebra known triz norm 11 • II is defined by
as the continuous analogue of the Baker-Campbell-Hausdorff (BCH)
formula [17-191. Ill+ hAll - I

We next show how the Magnus Expansion and Lemma I can be A(A) = m h
used to prove that zi(t) can be approximated by i(t) over an interval h 0+ h
(to , 7,, where Ti - to E (0,c,c is finite. Two stability criteria are introduced to the decoupled slow mode

Assume that r(t) E Si at the time interval [to, Ti. Let 0 < 6 << I subsystem.
and 0 < c << 6 << T, - to. With the Magnus Expansion, the state
transition matrix of the slow mode system over the interval [to, to+6] Theorem 2 The zero solution of the slow mode hybrid system to be
is given by almost sure exponentially stable, it is sufficient to have

r Mj+n.(to, n + 6) = ezp(] A(r(s))ds i F eift( 'A i ) < 0, (33)
uil M+!

+ /IAl(r(s)),A(r(s')dslds r and necessary to have

A( Ar(s")IdsIds Id eii(- 'A,1 ) > 0. (34)

..) '27)



IV. DECOUPLED FAST MODE SUBSYSTEM
f(()O)= p(Z(O), 0). (.45)

This section examines the limiting behavior of the decoupled fast

mode subsystem given by From Eq. (4.5) it follows that r(9) takes values among the fast states
of the group Si, then zj(0) behaves approximately as any time invari-

p2(t) = ,l2[r(t)]z(t). z(to) = zo. (35) ant systems with constant system matrix held to their values at the
last transition of r(g). The following theorem addresses the problemAssume that all -lps of 2 A, 3 are hounded, i E 5b, .7 E S, and

r(t) = j E Si • To analyze the state z(t), the stretched time-scale for the case.

0= (t - to)/i/ is used. Hence, expressing the system gtv, n by Eq. Theorem 4 Assume that it = 0() and llm,_Oit/c - k where k =
(35) in the stretched time-scale 9 yields 0(1). Then Z,(8) is approximately modeled as a hybrid system Eq.

2(0) = A12(r(O)IZ(O), Z(0) = zo. (36) (36) depending only on the fast states of the ith group with generator
Fik in the 9 time scale.

Similarly, the equation for the evolution of r(8) becomes

dP(O) = P(G)( ~F + IG), P(O) = 1. (37) Case III. c = o(I) and Um-o0 lI/ -- oo.
d9 In this case we define the symbol L = p' where i' tends to zero

as t tends to zero. Let (Z, 8) have the outer expansion given by Eq.
Similar to Section 3.1. it is known that the joint process (Z(8)T , r(9)) (40). Repeating the same procedure discussed before yields the same
is a Markov process whose state space is R' x S. Then we denote by results in Section 1lI.
.,(Z 0),

)=<Z(8) 5 Z + dZ r(8) E Si), (38) Theorem 5 Suppose that c = o(p) andlim,_o o/E - co and r(to) E
Si and all values of 2 1i are finite. Then, for t E [to, Ti]

the joint p.d.f. of the process (Z(9)T , 
r(0))T. Defining fiZ, 9) = 1. zi(t) can be approximated as an average system whose dynam-

(fit 1 (Z, 9) .- ,,,,(Z. O))T, then the fJ(Z,8) is governed by the for- icat equations are described by
ward Kolmogorov's equation shown below.

af(Z,O) = Cp(Z,9) + ( F + tGT)p(g(,), pzi(t) = iAi.i(t), -4i(to) = z(to). (46)

0 f 2. The mean-squared error between zi(t) and i(t) tends to zero

(Z(O), O) given. (39) as e tends to zero.

In the sequel singular perturbation methods are used to derive the V. TIlE COUPLED CASE
asymptotic expansion of f(Z.0). The limiting behavior of the solu- This section considers the singularly perturbed stochastic hybrid
tion of Eq. (39) depends on the relative size of I and c as both they system with Eq. (1) -(3). The purpose of this section is to define
tend to zero. There are three cases to be considered: a slow mode subsystem that describes the slow dynamics and a fast

Case I. p o(e and Iim,.a F - 0. subsystem that describes the fast dynamics. Their solutions are then
used to approximate x(t) and z(t) over the interval of fast transitions

In this case we introduce the symbol It . i' tends to zero as within each group. The decomposition of the system and the r(t)
c tends to zero. t(ZO) has the outer expansion process together into slow and fast subsystems depends on the rela-

tive size of I and e. First, consider the case p = o(c) and I = 0(c).

p(Z. ) = (pt)kp (Z,' ) (40) The slow mode subsystem over the interval of fast transitions within
each group is approximated by a linear time-invariant system model.

k=0 k=0 The fast subsystem must be redefined over the interval of each fast
where p'k (Z, 0) = [ilet "'(Z, i..... e ,/p'(Z, O)IT. transition of the r(t) process.

we I Secondly, the case 0 < c < it < 1 is considered. In this case
Substituting this in Eq. (39) and equating the coefficients of like the system can be regarded as a slow mode subsystem with system

powers of t and solving for the leading order term yields matrix

r3~(ZR0) = iiei,,(Z - Z(8)), (41) = A,(r(t)J A, 2((t)J (7
[ A21[r(I)l A2[r() (47)

where Z(9) e ' A.,Z(0). Equation (41) can be interpreted as fol- $ A-
low: if r(O) = j E Si and Z(0) = z(to), the limiting behavior of Z(9) with the initial conditions zi(to) = zo and zi(to) = zo. Since all the
is submatrices are bounded, the solution to the system converges in the

mean square sense to an approximate model with averaged system
Z(0) = e A.,8z(to), (42) matrix

which when transformed to the time scale t becomes -=[ , 12A
A = 21- 2A.(48)

z(t) = 
2

A ,(1-t/oz(to), for t > to. (43) _ _. (

If all the values of 2,ti, are stable, then z(t) can be approximated when r(t) takes values in Si for to _< t < Ti.
by Eq. (13). The following theorem summarizes the case. To analyze the behavior of the system, it is assumed that all

Theorem 3 As.sume that p = o() and lim,op/c - 0, all the the values of system matrices 2Ai are invertible and stable. Thus, a

values of 21lj are stable, and r(to) j Si. Then as e -- 0 desired slow dynamics is given by

z(t) = exp( 2 Ail(t - to)/ 19)z(to), for t > to. (44) x,(t) = ('A, _ ,( 2 ,)-'( 21A,))£(t),
=' Ai~i(t), i(to) = z 0 . (49)

Case 1I. it = O(L) and lim,--o p/c -. k where k = 0(l).

The case introduces the symbol 8 = k + 0(p) where p' tends and a desired fast dynamics given by

to zero as c tends to zero. Like the trst case, p(Z,#) has the outer ' f ,i ,i(t), (50)
expansion given by Eq. (40). Substituting this in Eq. (39) and z (

equating the coefficients of like powers of e and solving for the leading with the initial condition i,i(to) = zo - [ ,j -  j ,x 0 . Finally, the
order term yields solutions of Eq. (49) and Eq. (50) are used to approximate the

original slow and fast states.
do'- z" "f ,0) + (k FT) °(z e ,



Theorem 6 Assume that 0 < f < it< 1, r(t) takes vaiues in S5, results presented in this paper provide an initial step in facilitating
for t E [tn, T.J, and all the unities of system matrices 2Aii are stable the analysis of the behavior of singularly perturbed hybrid systems
and invertible. T"hen with control or noise.

x,(t) = -,(t) + O(), (51)

Z,(j) = ;f.,(t) _ (2~,, )-1 (21 A, ).,(t) + O (,a (52)
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Fig. I The Stochastic Switching Process r(t)
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STABILIZATION OF STOCHASTIC HYBRID SYSTEMS 1

C. C. Tsai and A. H. Haddad
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ABSTRACT

This paper studies the stabilization of a stochastic hybrid system whose state

equations are governed by a stochastic switching process, which is modeled as a con-

tinuous time finite state Markov chain (FSMC). First, Linear feedback laws with

non-switching gains are proposed. The non-switching gains are computed based on

the sufficient conditions derived for the definition of non-switching stochastic stabi-

lizability. Secondly, Linear feedback laws with imperfect detectors are studied. The

range of the detection probability for the detectors are computed. The results are

shown to hold when the Markov chain is irreducible and the system states are per-

fectly observed.

I. INTRODUCTION AND PROBLEM FORMULATION

1.1 Introduction

The present paper is concerned with the stabilization of a class of stochastic hy-

brid systems . The state space of a stochastic hybrid system is a cross product of

an Euclidean space and a finite discrete space. Basically, stochastic hybrid systems

are a special type of linear, piecewise constant, time varying systems which switch

randomly among a finite number of linear time invariant models. The switching be-

haves like a continuous time finite state Markov chain (FSMC). Such systems have

been successfully used to model pilot commands in target tracking, isolation levels of

'This research was supported by the U. S. Air Force under grant AFOSR-89-0241



solar receivers, abrupt variation in the parameters of economic systems, and systems

subject to sudden component/sensor failures or repairs, abrupt environmental distur-

bances and changing subsystem interconnections [1]. Preliminary work established

the optimal control solutions for stochastic hybrid systems [2-7]. For a quadratic per-

formance, the optimal linear feedback control law with switching gains has already

been proposed. On the other hand, several schemes to stabilize stochastic hybrid

systems are investigated in [1]. Another study [7] developed the new definition of

stochastic stabilizability, and then established sufficient and necessary conditions for

this definition. Indeed, most of previous techniques require both the continuous states

and the value of the Markov chain to be measured, in order to implement on-line

the feedback laws with switching gains. In practice some information, such as the

complete knowledge about the Markov chain, is often difficult, if not impossible, to

obtain. Some control strategies with less knowledge of the Markov chain would be

more realistic [1,8].

Our aims here are to develop new stabilization schemes for a class of stochastic

hybrid systems. The schemes require less knowledge of the Markov chain. These

techniques are expected to aid in the design of controllers.

1.2 Problem Formulation

The system models under consideration are assumed to have the following state

equations:

.(t) = A[r(t)]x(t) + B[r(t)]u(t), (1)

where t E [to, T], T may be finite or infinite, z(t) E R4 represents the system states

and u(t) E R" the control. All matrices are of proper dimensions and are random

through their dependence on the values of the random process r(t), called "form

index". The form index r(t) is governed by a continuous-time FSMC taking values

in a finite set S = {1,2 .... N}. The evolution of the form index r(t) with time is

described by the state transition probabilities of associated FSMC on S

2



Prob.{r(t + A) = jlr(t) = i} { A +O(A) if ij
= 1 -AiA +o(A) if i=j

N

Ai =  E Ai (2)
1=1,3 :

where A > 0, and all values of A's are finite. Let A be the generator of the r(t) process.

Assume that the initial values x0 , zo and r0 are independent random variables; x0 and

zo are also independent of the a-algebra generated by {r(t), t E (to, T]}. The current

value of the system model is denoted by an index, for example, Ai and Bi will denote

A[r(t)] and B[r(t)] when r(t) = i. The paper assumes that the x(t) is perfectly

observed and the r(t) process is irreducible. The ergodic distribution of the r(t)

process is given by

lim Prob.{r(t) = jlr(0) = i} = ei, i, j E S

t-oo

The paper is organized as follows. Section II develops linear feedback laws with

non-switching gains when the controllers are allowed to feedback only the continuous

states. Linear feedback laws with switching gains are considered in Section III when

practical detectors are used to observe the value of the Markov chain. Three illustrate

examples are given in Section VI. Section V concludes the paper.

II. Stabilization Via Non-switching Gains

This section considers the scheme to stabilize the system given by Eq. (1()-(2)

without any knowledge about the r(t) process. In [8] the author has showed that non-

switching control gains for a class of stochastic hybrid systems may be preferable, in

addition to the fact that they are much easier to implement. In what follow some

notations and the definition of non-switching stochastic stabilizability are introduced.

Sufficient conditions for the new definition are derived. The non-switching gains are

computed based on the sufficient conditions.

Let x(t, xo, u) denote the trajectories of the random processes x(t) from the initial

states x(0) = x0 , under the action of the admissible control u(t) and every sample

3



path of r(t). A new definition of non-switching stochastic stabilizability , modified

from the definition in [7], is described below.

Definition I-System (1)-(2) is said to be non-switching stochastically stabilizable

if, for any finite xo E R , there exists a linear feedback control law L that is constant

for all values of r(t) E S:

u(t) = -Lx(t)

such that there exits a symmetric positive definite matrix M satisfying

lim E{j x'(t, xo, u)x(t, xo, u)dt I xO} < xoMxoT-oo O

where IILI < oo, and x'(M') denotes the the transpose of the vector x(t)( the matrix

M).

From the above definition, non-switching stochastic stabilizability of a system

means that there exists a linear feedback law which drives the x states from any finite

initial states x0 asymptotically to the origin in the mean square sense. Sufficient

conditions for non-switching stochastic stabilizability are derived as follows:

Theorem 1 System (1)-(2) is non-switching stochastically stabilizable if, for, for

each form i E S, there exist a control law u(t) = -Lx(t) such that for any given

positive definite symmetric matrix Ni, the (unique) set of symmetric solutions, Mi,

of the N coupled matrix equations

1 M 1 N

(A1 - B ,L - A)'M+ Mi(AI - BiL - lA,) + E AijMj =-Ni (3)(~ A2- iL-" j=*,joi

are positive definite for each i E S.

Note that Theorem 1 does not require the assumption of the irreducibility of

the r(t) process. The proof of the theorem is similar to the proof in [6] except the

unobserved value of the r(t) process. In applying Theorem 1, we choose the control

law L, let Ni be identical or simple diagonal matrices, and then solve for Eq. (3) to

obtain the symmetrical and positive definite matrices {Mi : i E S}.
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The sufficient conditions in Theorem 1 are difficult to check. There exits a simple

necessary condition for non-switching stochastic stabilizability of system (1)-(2). If

system (1)-(2) is non-switching stochastically stabilizable, then in each form i, L can

be chosen such that all the closed-loop system matrices (Ai - BiL - 'Ai) are stable.

The non-switching gains can be computed based on the following procedure. First,

let the control law L be chosen such that all the matrices {Ai - BiL - !Ai :iES1

are stable. Secondly, let {Ni : i E S} be identical or simple diagonal matrices, and

then solve for Eq. (3) to obtain a set of symmetrical matrices {Mi : i E S}. Finally,

stop the procedure if all the matrices Mi are positive definite. If not, go to the first

step and repeat the procedure again. An example (Example 1) to illustrate such

procedure is shown in Section IV.

III. STABILIZATION VIA SWITCHING GAINS WITH IMPERFECT

DETECTORS

In the previous section, stabilization of stochastic hybrid systems by a nonswitch-

ing linear constant feedback law was introduced. The main advantage of this stabi-

lization scheme is lack of the need for detection and estimation of the r(t) process.

However, despite the simplicity of this scheme it does not permit a large class of such

systems. To alleviate the shortcoming, switching gain stabilization is considered in

this section. The scheme requires a form index detector to detect the current value

of the r(t) process. The detector is with the following characteristics:

* All jump times of the r(t) process can be detected.

* Let r*(t) denote the output of the detector. The value of the r*(t) over the

interval [tk, tk+11, where tk and t k+i are two successive jump times of the r(t)

process, remains constant. The relationship between r(t) and r*(t) at the jump

time tk is given by

i,}={ p if i = j
Prob.{r*(tk) =jlr(tk) = if i =j

5q ifij
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where p is the detection probability of the detector for each form and q = N-"

In the scheme the linear feedback control law depends on the system states and

the value of the detector, i.e.,

u(t) = -L[r*(t)]x(t),

where IILill < oc. Thus, the closed-loop system becomes

.(t) = A[r(t), r-(t)]x(t) (4)

where A[r(t), r*(t)] = A[r(t)] - B[r(t)]L[r*(t)].

In what follows the stability of the system given by Eq. (4)-(2) is studied and

two stability criteria are introduced. To have the stability criteria, a brief review

to the notation of logarithmic norm is given. The logarithmic norm (also called the

measure of matrix) was investigated in 1958 separately by Dahlquzist [9] and Lozinskij

[10] . The properties of the norm have been well documented in [11]. The norm has

been applied extensively to study the growth of the solution of linear, time varying

systems. Below is the definition of the logarithmic norm.

Definition 2: The logarithmic norm associated with the induced matrix norm 1j
is defined by

p(A) = lir Il + OAI - 1
e-0 0

With the norm p and the irreducibility of the r(t) process, we derive the following

important lemma in that we use it to find the conditions for the stability criteria of

the system given by Eq. (4)-(2).

Lemma 1 Let the r(t) process be irreducible. Then

1 T N N

-im "Jo (l[r(t),r(t)])dt = ei{pp(Ai) + q E p(Aj)}, w.p.1
i1o i=l ,j#i

where A j denote the current value of A[r(t),r*(t) when r(t) = i, r*(t) = j.

Proof: Let T denote the total sojourn time over the interval [0, T] for each form i of

the form index r(t). Since r(t) is an irreducible FSMC, it is well known [12] that

6



--m -T = ei, w.p.1

T-co T

Further, Tij is defined as the total time when r(t) = i and r'(t) = j over interval

[0, T]. It is easy to show that

lim u(Ai,)Ti = { peip(Aii) if i = j, w.p.1
T-oo T qeit(Ai,) if i j, w.p.1

This completes the proof.

Theorem 2 The null solution of the system given by Eq. (4)-(2) is almost sure

exponentially stable if it is sufficient to have

N N

ei{pu(Aii) + q E p(Ai)} < 0
i=1 j=l,3ji

and necessary to have

N N

Zej{pti(-Aii) + q I(-A, 3 )} > 0
i=1 =1,.?#i

Proof: From the theorem in [11, pp. 89] it follows that

I1x 011e- f $T _kA r ( lt < Ijx (T )ll < IlX 011e °fT T P(A',(r( t. )"

As T tends to infinity, Lemma 1 yields the results.

If p=l, i.e., the detector is perfect, the results are shown in [1]. In other words, if

the system states and the value of the r(t) process are perfectly observed, and if the

linear feedback law with switching gains satisfies

N

es/(A,,) < 0 (5)

then the null solution of the closed-loop system is almost sure exponentially stable.

There arises a interesting problem: if the control law with switching gains is designed

to satisfy the condition given by Eq. (5), what is the the range of p such that the

closed system is almost sure exponentially stable when the imperfect detector is used?

The following corollaries answers the problem.

7



Corollary 1 if Fi 1 eim(A,,) < 0 and N e p(Aj} < 0, and 0 < p

then the system given by Eq. (4)-(2) is almost sure exponentially stable.

Corollary 2 if FN1 eip(Aii) < 0 and .f= eF,j=jii(4 (Ai,) > 0, and

- , e-,( e,p > I + eijN Ni (6)
N-i F-Nj ej F-j=,j p(Aij)- eip(A,,)

then the system given by Eq. (4)-(2) is almost sure exponentially stable.

IV. EXAMPLES

In this section three examples are provided to illustrate the methods derived in

Section II and III. The first example demonstrates that a system given by Eq. (1)-

(2) can be stabilized by using only a linear feedback law with nonswitching gains,

i.e., any control law with switching gains does not satisfy the sufficient condition (or

the necessary condition) given by Eq. (5). The second example examines a system

which can be stabilized via both two methods discussed before. The range of the

detection probability for the detector is computed. Finally a system which can not

be stabilized by the method in Section II but can be stabilized by the method of

Section III is considered.

Example 1: Consider a system with the form index r(t) taking values in a finite

set S = {1, 2} with the generator

The system and input matrices are given by

A= 2 3 ,B=0

A2 =[ ' 1, B2 []A=4 5 I

This example chooses the linear feedback laws L and {N : i E S} as follows:

8



L[5, 171,N 1 0 1 , N2 = 21

Solving for Eq. (3) yields

M 1 = 1.2792 7.9064 0.2418 0.4156

Since the solutions M1 and M2 are symmetric and positive definite, the system is

non-switching stochastically stabilizable. However, this system can not be stabilized

by the method in Section III. Given the logarithmic norm associated with the induced

matrix norm 11 I1 ( or II" 112 or I1I), for any set of designed switching gains Li and

L 2 , it is shown that

eilt(Ai - B1 L1 ) + e2Y(A 2 - B2 L2 ) > 0

eLg(Aj - B1 L 2 + e2 Y(A 2 - B 2 L1 ) > 0

The sufficient condition given in Theorem 2 does not hold.

Example 2: Consider a system with

A=[23 2 ]
A= 2 3 1 ' 4 5 ' 2

The stationary distribution vector of the r(t) process is given by

[ei, e2] 5 -J3

Given the logarithmic norm associated with the induced matrix norm fl jJ1 and

L, = [2, 4], L2 = [2, 5], we have

ejjA(Aj - B1LI) + e2Y(A 2 - B 2L2 ) = -0.4 > 0

eip(A1 - BIL 2 + e2y(A 2 - B 2L1) - 1.2 > 0

9



Thus, from Corollary 2 it follows that p > 0.75. In other words, the detector must

the detect probability p where p > 0.75.

On the other hand, this system can be storhastically stabilized by using a non-

switching feedback controller. Let L = [2, 3]. Solving for Eq. (3) yields two symmet-

rical and positive definite matrices M1 and M2 where

MI = A 1 2= 1
LVL11 4  2399-19 14 38 121

Example 3: Consider the two-form system with
1 4

A 1=-, Bi=1, A 2 =4, B 2 =-1
3' 3'

and the generator of the r(t) process

A=[ 3 -

Obviously, this system is not nonswitching stochastically stabilizable. We design

L, = 2, L 2 = -3 such that the sufficient condition
32 A 5

3Lz(Aj - BLj) + - (A2 - B 2L 2) = 5 < 0
5 53

is satisfied. Then we compute
32 10

53u(A, - B, L2) + 5 jL(A2 - B 2Lj) > 0

From Corollary 2 it follows that p > 2 Thus, to stabilize the system, the detector
3.

must have the detect probability p where p > 2

V. CONCLUSIONS

This paper considered the stabilization of stochastic hybrid systems whose state

equations depend on continuous time finite state Markov chains. Non-switching feed-

back laws have already been studied when the controllers are allowed to feedback only

the system states. The non-switching gains are calculated based on the sufficient con-

dition for non-switching stochastic stabilizability. Furthermore, linear feedback laws

10



with the practical detectors are proposed. The range of the detection probability of

the detector is computed according to the sufficient conditions for the almost sure

exponential stability of the closed-loop systems.

Additional work remains to be done in stabilizing singularly perturbed stochastic

hybrid systems which have been studied in [13,14]. The results presented in the paper

provide a initial step in facilitating the work.

Finally these results may be extended to the optimal control problems for singu-

larly perturbed stochastic hybrid systems.
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ABSTRACT a parameter set X be given. In many situations, the function
F is many-to-one so that we can find an invariant partitioning

Canonical forms for discrete linear N-periodically time-varying {Xi C X U,., X, = X for some index set I, Xfnx, = 0 for
(LP) completely reachable systems x(k) = Az(k) -.- Blu(k) i j}
and y(k) = Ckx(k) -!- Dku(k) are presented, which generalize F(-) = F(y) -,y eX,
the linear time-invariant (LTI) case. The derivation is first The parameter set X is then too 'redundant' with respect to the
accomplished through an equivalent LTI-quadruple to 4NV-tuple function F. Therefore, it is natural to select a representative

((,,B, , ,=o.,_. This LTI system is revealed to
be a subcomponent in a decomposition of a given discrete LP or a canonical element z, E X, for the subset XA. This selectingsystem represented by the 4N-tuple. Finally, an application process would be understood as a map A from X into X. Suchof the obtained canonical forms is demonstrated in a control map A is called a canonical form for the parameter set X underthe partitioning {X : i E I) with respect to the objective
problem: eigenvalue assignment of the monodromy matri, function F. The function F on X is 'simplified' by restricting its

domain to the subset {-i : i E I) without missing the original
I. INTRODUCTION objective

Linear periodically time-varing (LP) systems have been F =Fi{ d A

studied by many researchers 16, and references therein). LP If such partiioning is induced by an equivalence relation R,
systems are suitable models for some periodic behaviors such as the objective function F and a canonical form A are
seasonal phenomena and rhythmic biological movement. It has
also been noted that LP controllers give linear time-invaraint F(z) = F(y) z R y (1)
(LTI) plants more robust control in the maximum attainable A(z) = &(y) Z R (2)

gain margin sense 111131. A(z) R x (3)
Motivated by the above, we have investigated more pre-

cise mathematical descriptions of LP systems 17!81. In this More specifically, consider a parameter space f ((A,,, Bb, Ci
work, we primarily show a star.-space canonical frm for- DA;))Di-h : ((AkBJ))v- zs completely reachable), an equiv-
crete LP systems x(k + 1) = Akz(k)- B u(k), y(k) = Ckz(k) + alence relation Rp and an objective function H where

Du(k) where the quadruple is N-periodic (A,B,,.C,,D) - (i) H is the vector valued pulse response or its one- sided z-

(Ak+N, B+N, Cj,+, Dj,+). As for LTI systems, we believe that transformation of a discrete linear periodically time- varying
the canonical forms for the discrete LP systems play the same (LP) system LP((A,,B&,Ct,D*)).eN.
role in such problems as realization, control and identification. H(:,i) = [CA,-I . AoA.AA..z -N+l +

In section II, a reachable canonical form is derived us- N+2
ing an equivalent quadruple to a 4N-tuple ((Ao,Bo,Co,Do), C,_*A-_ ... AoAN-_ .-- A,-z - --- C,- ]

(A,, Bi, C1, D1),....(A _,, BN_,, CN._1,D-1)). In section III, (zv I - A,." AoAN. ... A, 1+,)-'Biz-+
a system decomposition S'LS is derived for a given discrete Di:--- for i E N" (4)
LP system, and the equivalent quadruple is revealed as the re-
alization matrices for the LTI system L,. In section IV, a typ- LP((Ak,B,,C,,D)),te. : u(k) - y(k)
ical application is demonstrated using the reachable canonical
form along with the stability analysis and feedback connection z(k + 1) = Ajz(k) --. Bku(k), y(k) = Cz(k) + Dku(k)
rule developed in section ITM: eigenvalue assignment of the mon- (A, Bi. C,. Di)) = (Ak.., B&N, Ck.lN, Dk$N) for all k (5)
odromy matrix for a completely reachable discrete MIMO LP (ii) ((A,. Bk)) ,is called completely reachable iff each reach-
system. ability matrix R,((A&,B ))kv. for i E N' is full rank

Throughout this work, LP systems are assumed to be of
dimension n with m inputs, p outputs and period N such !Bi((Ak,B,)) ,. = 1B, A.B,- A.A,.,Bi-: .--J (6)
that (Ah,Bk,Ck,Dk) R'"" x R"" x R "  x R' for T.
k , {0,... N - 1). Bold face cha:acters are reserved for Ihismatrixreia;es thestate ,,-1) topast inputsu(;), k i.
matrices and vectors of 'big'dimension (a multipie of N) such (iii) RA,Bk,CS,.u),N. Rp ((A',B,C ,D))hN. iff there
as (A,, B., C_,D.) E R ' nx n x R '"x ' x R Npx "n x RN ' '  exist nonsinguiar matrices (T)ieN- such that

and r(k) E RN. The supprscript "' is used to indicate a set AkTT_- = T*A',, Bk = TkB,, ChT&_l = Ck,, Di = D'j (7)
such as {0, , 2...N - i = N'. Note that H is invariant under Rp as in (1). Now, we

intend to derive canonical forms {A) as in (2) and (3) for

II. STATE-SPACE CANONICAL FORMS {((Al ,Bk,Ck,Dk))k-. ((Ak,Bk))kE,. is completely reach-
able } in (6) under Rp in (7) with respect to H in (4). Since

Before deriving the canonical forms, let us recall the sig- a system (5) is involved, such A is simply called a reachabilitynificance in general setting. Let an 'objective' function F on canonical form for discrete LP systems.
Sigerletn Lea'oetefutnFIn our derivation, it will be very convenient to con-

'Ths as supported by the U.S. Air Force under grant AFOSR-89-0241 sider an equivalent quadruple (A,,B,,C,,D,) to a 4V-tupe
ad Northwestern. ((Ak, Bi, C, Dk))AN. induced by a map E

E : ((Aj,.BkCk,D))k.-. - (A.,B.,C.,D.) (8)

CH2642-7/89/0000- 1220S1.00@ 1989 IEEE 1220



B 0  us introduce such extended canonical form r2,.,. arnd hence a1 B, reachability canonical form E-r3,..,E:
A. = A .. , B, = ((A Bk,C,,D,))1,EN. - ((Ale*., B2.,,,C .D,..,))ke,,.(13)

AN-i BN-which is called hereafter the Kronecker canonical form.

Co~ ] Do ALGORITHM for the KRONECKER CANONICAL
C DD, FORM:

C. = .. , D, = (i) Construct (A.,B,) by E for a given ((A,Bk)).EN. that

C.L- D.- is completely reachable, and search independent columns in
R(A.,B.): Recall that each column of R(A.,B,) corresponds

The map E, which is called hereafter the extended form, pre- to each cell of the following Crate Diagram, e.g., for the
serves the complete reachabiliry of ((A,,B.))CN- in (6) and case n=5, m=2 and N=3. Observe that all columns of
the equivalence relation Rp in (7) in the following sense. P((Ak, B))kEv- (with the proper zero-augmentation) are cor-

LEMMA 1: ((Ak,B,))1,EN-iS completely reachable iff responding to i-numbered cells. See (6) and (10).
(A.,B,)is reachable.

PROOF: Observe the reachabiliry matrix

R(A.,B,) = [B.IA.B.l...IAv-B. (9) I 0
After each submatrix AB, for I E (Nn) is block-diagonaiized 

B2]

by a column change operation, the whole matrix can be block-
diagonalized by another column change operation 00 1[2 2

R(AB.B)T, = diag([Bo AoBiv-I AOA-,BNv-z ."],I

[B, ABo AIAoB,,_ j ... A, 1 1 2 2 0 0
[BN._ AN.1BN-2 AN-iAv-2BN-3 ...) (10) A2 ®11t®tlI0 I i1

where T, denotes those column change operations. Since A3 0 2
each diagonal component in (10) is the reachabiliry matrix e
R.((A,. B1)) ei- defined in (6), we proved the lemma. A r 11 2 2 0 0

LEMMA 2: Let Re be an equivalence relation defined by: I I
(A,,B,,C.,D.) Re (Ae, Be, Ce, D,) iff there exists a diagonal
nonsingular matrix TD diag (T'),CN* such that

A.TD = TA-., B. = TDB, C.TD = C,, D, = De (11) A '  2 " 01011I1
Then, 

(14)

((Ai, Bk, C, Dk)) keY- Rp ((Ak, B'k, C , Dj)) EN- More specifically, the m cells of A -' ' [0-.. 0 Bir 0-.. 0[ are
o (A .,B ,,C,,D ,)Re(A ',,B ',,C ,,D ',) (12) equal to (A . .. -AoA v-_ ... A, j,)'A . .. -AoA ti-_ .. A,,jBi with

the proper zero augmentation for all r E n*, a E N" and i E m*.
PROOF: By direct calculation of (11), we obtain (7). //// The search procedure is principally the same as for the usual
For showing our main result, let (A_,B,, C.,D,), and Scheme II, from left to right until all Nn independent cells are

Ai, Bk, Ck, D )j,. denote (A., B,, C., D.) and founded, except that the dependency test for an i-numbered cell
Aj,BkC.D, ) D&JE. of which (A.,B.) and ((A.,Bk))keN- are only needs to be done regarding to all previous independent i-

respectively reachable and completely reachable. numbered cells. Once a cell turns out to be dependent, set up
THEOREM 1: If a map r, is a canonical form for the dependency equation, which will be utilized in step (iii).

{(A.,B., C.,D.).} under Re, then a composite map E-,r.E The positions of dependent cells would be marked by big 0 as
is also a canonical form for {((A, B.,C.Dk)).I.} under Rp. in (14). The positions are actually specified by the reachability

PROOF: (i) The map E-.E should satisfy (2). index (k,,k .... kv,,), for an instance, (2,3,2,3,2,3).
(il) The ordering of independent cells is now chosen differently

((Ak, Bk, Ca, D))], Rp ((A., Bk, C., DY')), from the Scheme II, so that the resulting matrix is diagonalized.
4* (by LEMMA 2) The procedure is as follows: Order al i-numbered independent
E((A., B., Ca.,Dj.)) . Re E((AB, Ck, D]Y)) . cells to form a matrix such as for i = 0
* (since both sides of the above are reachable by

LEMMA 1, and r, is a canonical form as in (2)) = [[Bo]i /jB,- [-- Ao[EN.,,I,- -
= r where the subscript 1 or 2 of [Boj, for instance, stands for the

first or second column. Form a transformation TD
E-lrE((Aa.B,.C,.D,)). = E-r.E((A.,BCD)). TD = diag (TleN. (15)

(ii) The map E-,r.E should satisfy (3). (iii) Find an extended canonical quadruple r26 .,

(since r. is a canonical form as in (3) ) r...: (A.,B.,C.,D,) - (A2..,,B 2 .,,C2 ... ,D2..,) (16)

r.(A.,Bo, C.,D.),. Re (A.,B.,C.,D.),
=: (by the definition of E in (8) and LEMMA 1) AT 0 = TDAI., B, = TDBI,., CTD = Ck,. D, = D2 6 .,
r.E((A., B., C.- D&))_, Re E((A., B, C., D,))., For obtaining A2.. ,. utilize the dependency equations found in
= (by LEMMA 2) step (i).

E-'rE((A.,B.,C, D)),, Rp ((Ak, Bk, Ck, Dk))., (iv) Applying E', we finally obtain the Kronecker canonical
((A,_.k B2"..I, C3,h, D,2.,k) )kCV-

We proved the theorem. ///// REMARK 1: In step (i), we should always find n indepen-
Although it is relatively easy to find a canonical form r dent cells in all i-numbered cells for each i E N'. To show this,

of E((A,B,,C.,Dk))jEN- such as the 'reachability' canonical rewrite the corresponding reachability matrix R,((Ak,Bk))eN-
form with the Scheme II 121 (since the notions of reachability in (6)
and controllability are different for discrete time systems), we R,((a&, B&)ajt- = JW, 0jWj 04V,
need to find a canonical form r, which is of the extended form [
as in (8). This is because we can apply the inverse map E to Wi = [B, I AB., A. - AoA -t-'- A.B,]
obtain a canonical 4N-tuple according to THEOREM i. Let 4. AA,-, ... AoAv- ... Aj (17)
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By assumption of the complete reachability, R(W.,*,) is full (iii) Form TD in (15) with (27) to (29). Applying (16) and uti-
rank for each i, and the number of independent columns is lizing (21) to (26), we obtain (there is no need for numerically
now the dimension n of the monodromy matrix *,. In step calculated TD yet)
(ii), we might order independent cells according to the order-
ing procedure of the usual Scheme Il. The resulting transfor- A1 ,
mation would yield the reachability canonical form with the
Scheme 11 (A,..,Bu., C3..,Duo), which is similar to the canon- 0 -4 0 0 2
ical quadruple (A",. ,B3., ,C:... D:.,,.) in (16) by column 1 -3 0 0 1
and row permutation. 0 2 0 0 -2

EXAMPLE 1: ((C , ,Djv))&, 6,- is arbitrary, and 0 3 1 0 -5
((A,.B&))ke- is given as 0 0 0 1 -4

0-3 00 1
48 192 -4 -42 301 r -1 -111 ~ 1 -6 00 7
3 12 0 -1 4 0 0 0 1 0 0 -4

(Ao, Bo) -16 -63 0 6 -16, 0 1 04 1 0 -2
-22 -88 1 15 -19 0 4 0 0 01 -1

0 40 0 -4 12 0 1 0 -2 0 0 2

0 -3 -4-1 -8 ir0 1' 1 -2 00 3
0 20 -2 -4 -19 0 0 0 5 0 0 -3(A,,BI) 36 -13 -8 -56 , -2 0 0 2 1 0 -2

0 21 9 -1 5 -1 -2 0 0 0 1 -7-38 7 9 45 0 -1

124 -155 10 -21 -78 0 0
23 28 -2 4 14 0 00 0

= 327 467 -22 44 239 , -1 40 0 0 0 0
-5 - 126 5 - 10 - 65 0 -B , -dg1 1 0 , '0 1 , 10 1 (

(i) Searching dependent columnns:Ba.di ([ i][ t:307 13 0 li 000 0
Calculate TD in (15) with (27) to (29) and (18) to (20). Ap-

Ro(CAh,Bk))kcs- = [Bo I AoB 2 I AoA:Bl I AoA 2ABo . plying (16), we obtain C2 . . and D2,.
(iv) Read out nonzero block in (As., ,B2 ",,. C2... D 2 .,,)

-1 -11 4 26 48 0 -106 - according to E - 1, and we finally obtain ((A.,,, ,B 2 ".& , C2 ,. , ,0 0 0 1 3 0 -5( D2..k)),eN-.
= 0 1 0 -6 -16 1 24 (18) In fact, each value of a canonical form is completly

0 4 1 -11 -22 0 46 specified by two things, a structural index ic and a para-
0 -1 0 4 10 0 -18 metric quantity 0: tells which positions of all matrices

Rl((A4,,Bk)),- = [BI I AB 0 I AAOB I AAOA 2 B, I " E-r . .,E((A. , ,B , , Ck, D,))k.hE are fixed to 0 or 1, and 8 gives
real values for the nonfixed positions. In the canonical quadru-

0 1 0 0 1 0 -4 ple (A 2m,# ,D 2..,q ,Cue., t2 of EXAMPLE 1, all entries
0 0 0 1 4 0 -2 of (C2 .. , D .,) are arbitrarily determined, and the invarianzs
2 0 1 0 12 4 -13 (19) are only found in (Aa... ,Ba..,.) in (30). The ordered set of read

-1 -2 0 0 1 2 9 9) number on the nonfixed positions in (As-, B2.,) in (30) and

0 -1 0 - -9 1 7 the set of indices indicating the fixed 0 and 1 entry positions are
respecively values of the paramevric complete invariant 9 and
structural invariant it. Specifically, since the reachability index

, .= [B2 I [A2B1 I A2A1 Bo I A2A1AoB2 I'] .(2,3,2,31,2,3) determines the fixed 0 and 1 entry positions, we
can write

0 0 1--41 -10 1 4
O 0 0 1 2 0 -2 1 rr2 . .. (A.,B.) = (2,3,2,3.2,3)

-f1 4 0 0 22 -11 6 J (20) The range space of r., however, is a proper subset
0 -1 0 -5 4 -25
0 0 0 0 0 -1 7 N.

The reachability index turns out to be (2,3,2,3,2,3). Setting = }
up the dependency equation:

An index (2,3,2,3,1,4), for instance, does not correspond to
AoA 2 [Bll, =-4[Boll - 3Ao!B, + 2[Bo], + 3AoIB 2, 2(21) r. for reachable {(A.,B.)} in t.he case n = 5, m = 2 and

AoA3AllBo]3 = 2]Bo]1 -. Ao[B] 1 - 2[B 0]2 - 5Ao[B 2]Z N ='3, since there are respectively 4.5 and 6 independenz ceiis
-4AoA=j[Bl: (22) (columns) in groups of 0, 1 and 2 numbered cells (in matrices

AAofB] -- -31B] 1 - 6A1 [E0] + 4A,[Bo]3 (23) of Ro((A ,.B&)),te., R((A, ,Bj)),je.- and R2 ((A , ,BA))1ej.-),
[ which violates the asumzption of the complete reachability as

AlAoA[Btlj =[jB]i - 7A1 Bol] - 4[EB] 2 - 2A 1 [Bo]2  mentioned in REMARK 1. The parametric complete invariant
-AiAo[B]z (24) 0 is indeed the 'simplified' parameter. All quadruples

A2AI[BoI= -2[B 2 ]1 - 2A21 BIJ + 5(B 2) + 2A 2 [B],(25) {(A.,B.,C.,D.)} (and hence {((A. , .C , .D)),.}) are pa-
A 2AlAo[IB] 2  = 2]B 2]1 + 3A2[BlJ1 - 3[B 2 ]: - 2A 2 [B]2  rameterized by x and 9.

-7AA[Bo]2  (26)

(ii) Ordering independent columns for each i: i. A SYSTEM DECOMPOSITION

T0 = [ [Bo]1 , (B2 ]z I [Bo]2 Ao [B2]2 A0A2 [B1]] (27) In the foregoing section, the extended form (A.,_B. C.,D.)played a key role in the derivation of the canonical form for dis-T = [ [Bi] A, [Bo ] [B 1]2 A, [Bo]2 AjAo [B2]2 ] (28) crete LP systems. Now, a question naturally arises what the
Ts = I lB 2) A2 [B1 ) I [IB 2 2 As [B] 2 A3A [Bo]: 1 (29) relationship is between the discrete LP system LP((Ax, B , , Ck,
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D1))hEv- and the LTI one L(A.,B., C.,D,) for which the re- PROOF: From (39), the state z(k) of LP is related to the

alization matrices are of the corresponding extended form. We stat z(k) of L,

investigate this through a system decomposition. Let M,, r(k, z(k) = M' .zr(k - N -t- 1),.... - r
and Q(k) denote respectively a nonsingular Nj x Nj matrix, ' N 1...
a concatenated vector, and a diagonalized matrix Due to the boundedness of M., j z(k) - 0 as k - oo iff

1I z(k) I - 0 a k - oo. Moreover, since S' has no internal
Sstate, and all states of S go to zero for the zero input.

mj = (31) LEMMA 4: The following identity holds

4 p.(z) = det(zi - A.)
= det(AI - A.-I ... AN-iAo---Ai) = p(A), for A = z- (42)

r~k) = [rT(k -,V+ 1) ..- rr~k± 1) ,T(k)]T (32)
PROOF: By direct calculation of det(zf - M-A,.f,,.
The subsystem of S'LS have unique properties wnica are

(k) = diag (Q(k -N - 1), ... Q(k + 1), Q(k)) (33) useful for the feedback connection.

Observe that M, is the generator of a cyclic group of order N. LEMMA 5: The following identity holds

THEOREM 2: A discrete LP system in (5) is decomposed SS*L,S LS (43

LP((A,, B,, Cj, D,))ke. = SL(A.,B., C., D.)S (34) PROOF: Let u(k), y(k) and r(k) be the input and output
of S'L.S, and the output of SS'L.S, respectively. Then,

where, using (31), Y(k) = M;(k+ )L.S u(k) by (37)

S : t,(k) - v(k); v(k) = M-' r(k) (35) r(k) = Sy(k)

= MV'7(k) by (35)
z(k + 1) = A.z(k) +B. (k),. w(k) = C.z(k) + D.v(k) (36) Therefore, r(k) = L.Su(k), which means the identity (43).

= LE.MA 6: Assume the dimensions of all subsystems are
compatible. The parallel (addition) or serial (multiplication)

S" : w(k) - 1 (k); y(k) = M;( *') w(k) (37) connection of the extended invariant systems as in (36) again
yields an extended invarint system.

REMARK 2: Let L(A.,B,,C.,D,) be simplely L,, and PROOF: Let a(A.,1 C ),w DI ) and (A2V C',D) denote

called the extended invariant system of LP((A&,BiC,, the reliations, and (v'k),z'(k, w(k)) and (v(k),z(k),

Dh))he,.. The extended invariant sysrem L. is clearly diferent w"(k)) variable sets of the input, state, and output of the two

from the other invariant models 13]151, since its derivation does extended invariant systems L., and L.2.

not appeal to the, so called, lifting operator 13). For a given (i) Let vl(k) = v"(k) = v(k), w'(k) = w2(k) = w(k), and the

LP((Aa, A., Cj., D))hejy., the composite system SLS indeed parallel connected system is

give, its I/O-equivalent model at every instant of time, and still rZI(k + 1) [A! 0 lz'(k) 1 +r B,1vk
L. pertains to the stability analysis and design as shown later. z 2 (k +01) - 0 A2, z:(k) B (k)

PROOF: By stacking the equations in (5) for times (k - I I

N + 1, k + 1, k), we obtain another LP system w(k) = C C ] z(k) [D,-- v(k) (44)

- . :k) - (k) The quadruple of (44) is not of the extended form- But by

2t(k + 1) = A,1(k) + Abfl(k), y(k) = Ckl(k) + r)ja(k) transformation Ta

( . (A ,.w1.b)( # ,. + , V) (38) 1., 0 0 .. o 0 0 0 .. 0
0 0 0 ... 0 In, 0 0 ... 0

Consider the following transformati 0 Im  0 ... 0 0 0 0 ... 0

,(k) = M'U(k), z(k) = M w(k), w(k) = M;'y(k) (39) TR - 0 0 0 ... 0 0 I-, 0 ... 0 (45)

By applying (39) to (38), we obtain a linear system with the 0 0 .. 0 In, 0 0 0 ... 0
quadruple 0 0 0 ... 0 0 0 .-.. o I,

where n, and n-j are dimensions of L,, and L 2 , the quadruple

' "' "" 'E o :'e : , ), +
Observe the identities 

0 A (, B,

(ii) Let v 2 (k) = wl(k), vl(k) = v(k), and w2 = w(k), and the
M.-IA.M. = X.,: M~t.Ml = B,+1 serial connected system is

= .t M=D , (41) [z(k + 1) = - [ A, 0 z'(k) . BDV(k)

Applying (41) to (40), the quadruple in (40) becomes I + [
(A.,B.,C.,D.) as in (8), and the transformed system is the w(k) D,C. C, z(k) ] rD! ] v(k)(46)
LTI system L(A.,B.,C.,D,) in (40). Moreover, the input and (k)
output transformation in (39) yield S and S" in (35) and (37),
rin pmtively. ///// Again, by TR in (45), the quadruple is

LEMMA 3: A discrete LP system LP((A&,B,,C,.D.))b.jv[ A., 0 ] [ BC.D "
in (5) is asymptotically stable iff its extended invariant system E 0 I ['D', C,
L(A,,B.,C.,D.) in (36) is asymptotically stable. BIC, Al I ' D )



THEOREM 4: The following two feedback systems are the [Bo [

"ame01 
[]

- - I

_ - ' I 1'S3SA. oj o

PROOF: By using LEMMA 5 and 6.
The following TD yields the extended canonical quadruple

IV. APPLICATION TO EIGENVALUE ASSIGNMENT (A1... , Bu., M.TD, 0) of (A., B., M,,,0)

A typical control application of the canonical form derived TD = diag (To,T 1) (53)
in section I] is the eigenvalue assignment of the monodromy
matrix as in (17) of a completely reacha le discrete MIMO = [1 h A.A, 8.1,l A.AA.A, B.hI, 0 0 ,0
LP system L0 0 0 [illh As 8.],j AA, 18.1,

z(k + 1) = A,,,(k) + Bku(k), y(k) = ,.z(k) (47) (Ai....Bi..) =

where 1. is a n x n identity matrix. The eigenvalue assign- &0 0 0
ment problem is stated as: By what cyclo-s.atic state feedback 0 1 0 0 0

u(k) = Ll(k) is the monodromy matrix to of the plant (47) 0 0 1 10 0 4]
controlled to 4 0 = (AN-, - BN-1LN-1) ... (A, - BL) (Ao - 0 0 40.1 1 bo,(
BoLo) such that for a given desired polynomial p(A) 0 1a., 0 0

det(AI - (AN-1 - BN,.,LN-Z) .'. (A1 - B2L,)(Ao - BoLo)) (ii) The following T:. or Q yields the usual reachability canon-

ical form with the Scheme 11 (A2 ., B 2.,, M, TDQ,0) of
= p(A) (48) (A.,B., M.,0)

Although the eigenvalue assignment problem has been T. = (55)
solved 141, our approach using the canonical form is simple and
generalizes the time-invariant case. The solution is eventually [ll 0 MA, [Bll 0 ,AoAAIlo B ,0l

obtained in terms of the cyclo-static state feedback (L,)kE-,. lB.] 0 AmA, [Boil 0

and input transformation (Gk)keN- T 2. = TDQ (56)

u(k) = Gr(k) - Ljy(k) (49) 1 0 0 0 0 0
0 0 1 0 0 0

However, the problem is fist considered through the extended Q = 0 0 0 0 1 0 (57)
invariant systems: The controlled system in (47) and (49) can 0 0 0 0 0 1
be understood as in THEOREM 4 where 0 1 0 0 0 0

LPI = LP((Ak,Bk,I,,,0))kAeN., LP2 = LP((0,0,0,L))k N., 0 0 0 1 0 0
and LP3 = LP((0,0,0,Gi))1-j.. The overall extended invari- ( =
ant system L.,(1 - LL,)-'L,, is
L31 - L.IL.I)- 1 L., = (A. - B.G.G;'L.M.,,B.G.,,.,0) 0 0 0 0 0 4o. 1 1 .o 0 0

1 0 0 0 41.1 0 0 0 0 0
(50) 0 1 0 0 0 0 0 0 0 0 (58)

0 0 1 0 21 0' 0 0 0 0
Let the characteristic polynomial of the controlled extended 0 0 0 1 0 0 0 0 0 0
invariant system matrix A, - BL,M. be 0 0 0 0 ao. 0. 0 0 1 b0.1)

de: (zI - A. + BL.M.) = p'(z) (51) (iii) By the algorithm 12, pp. 434-4371, we ob-
tain the transformation R and controller canonical form

then, by applying LEMMA 4 to (48) and (51), (A2,,Bu,MTDQ1R,0) of (A,.B..M,.0) (see the derivation
in the APPENDIX)

p'(z) = p(A) for A = zN (52) 1 0 -02.1 0 -a,.1 0
0 1 0 .1 0 0

Therefore, the problem is solved by finding L. in (51) with R 0 0 1 0 -2.,1 0 (59)
proper G. for p'(z) given from p(A). R= 0 0 1 0 0

Without loss of generality, we show the procedure for finding 0 0 0 0 1 0
L. and G., and hence (Lk)jG. and (Gh)ke,. in (49) with an 0 0 0 0 0 _1
example. (AuBu)

EXAMPLE 2: A completely reachable LP system
oas in (47) of n = 3, m = 2 and N = 2 is (0 4 0 ai'i 0 000 1r bo'o 0 0

given Let the extended invariant system be L(A.,B,,M.,) 1 0 0 0 0 01 10 0 0 01)i
where M. is as in (31). 0 10 0 0 01j 0 00 0 (60)
(i) Using the ALGORITHM in section fl, find the extended 0 0 1 0 0 0I' 0 0 0 o
canonical quadruple r 2.. , of (A., B., M, 0). Let us assume its 0 0 0 1 0 0 0 0 0 0
structural invariance (reachability index) is o = (5, 0, 1, 0) 0 0 0 0 0. 0 0 0 1
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(iv) Assume that a desired characteristic polynomial is given canonical forms are useful mathematical tools, applicable to the

Sp(A) = 3- plA2 - phA - Po. Then, by (52), modeling, robust control and multi-rate systems.

p'(z) = z - PJz 4 - Piz - PC APPENDDC

For simple notation, let A = Au., ell = [Bu. 1 and el =
(v) Using the controller method 12, pp. 500-503 , we now intend IB,.I,. From (58),
to control the system L(A2.,B,.M.TDQR, 0) to
L(Al.,B;.,M,,TDQR,0) (A.,B%.,) =A' L, = a1 .,A'c 1 - a1 Ae1 .

- ao,,e1  (68)

SP 0 P r p 1 00 0)Ac 21 = aocU (69)
10 0 000 00000 Let
0 0 0 0 "0 0 0 0 (A1

S0 0 1 0 0 0 'j0 0 0 0 (6)A'el - alriAcii - al*1ell els (70)
0 0 0 1 0 0 0 0 0 0 then, from (68) and (70),U 0 0 0 0 1 0 .0 0 1 0 .)A l 7 .

by the input transformation G. and state feedback Let
G 1 L.M.T 0 QR such that A~en - a2 ,1 Ae11 = e14  (72)

Bl, = B2.G., A = A2, - BG.G 1 L,- ,TDQRA., (62) then, from (70) and (72),

(vi) From (60) to (62), Ac14 = all '- Cis (73)

1 -&.,o 0 01 Let

G.= 0 1 0 0 (63) A:ell - a2.iel = el (74)
0 0 1 -b .,1
0 0 0 1 then, form (72) and (74),

Ac13 = c,, (75)
From (60) to (62), 

Let

r0 k 3 0 k2  0 k, 1Ac 11 = ell (76)1°0 000 1 *
G-'*L,.LTD QR = 000 0 0 (4

GL TQR= 0 0 0 0 k4 0 then, from (74) and (76),
0 0 0 0 0 0] Ae1 = a2 ,1 el + ell (77)

where Form a transformation R = il 11 eL el e14 CIS C211, and we
obtain (59) and (60) by applying the formula A,.,R = R.A.,

k, = 00.0 - Po, k, = a,, - Pt B2. = REX. with (69),(71),(73),(75),(76) and (77).
k3 = a. - p2, = o4 - I REFERENCES
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Abstrac case 114,15,16,171. Using these measures, the problem of iden-
tifying optimal generalized state-space structures is considered.

The synthesis of min4imumX sensitivity state-space realizatins The theory is then applied to the example of the right-hift op-
of linear time invariant systems is a well understood problem. erator.
Such realizations have been linked to balanced realizations. In
this paper, the theory is extended to the synthesis of minimumn

senitiitygazruled tat-space muodels for singular linear sys- I ESTVT FS1F
ten. A salaz sensitivity measure is irst defined. T7hen the
minimizaion of the measure is consider over all admissible res- Given the system (1)-(2), the corresrponding transfer funcion
alizazious. Sinc minimal realizations ame not required to he r-is-
lazed by similarity transformation, the optimization problem is 14z) = c(zE - A) 6. (3)
more complex.- A criterion is given for determining optimal sen- Anmarxpi-(,VE 2.()AG ()xGL.()wl
sitivity structure. Inthe nonsingular caw,theacitenron reduce$ n ai arW )EG (! 4! L()wito the familiar result. The simple example of the rioht-shift op. provide another n'h order realization of the transfer function by
erator is coniderd- applying~ the action

The sensitivity of state-spae realiztions of liEr time- where F, is defined to be the set of all n~h order realizations.
invariant system has been a subject of considerable interest In general 0 is not a similarity action since U and V may be
to researchers doring the past five years 18,9,10,14,15,16,17,181. distinct. When x corresponds to the minimal order required to
Much of the motivation for this research has been the desire realize h(z), then all minimal realizations of h(z) lie on an orbit
to design digital filters and analog nietworks with minimumn pa- of 0 M
rameter senitivity. At present, the sensitivity theory for this The sensitivity of the transer function to the realization pa.
clan of system isa well established. The purpose of this pape rameters in described by tile sensitivtY functionc
isto Ady the sensitivity ofenaud state-space rniatioos 8a(z) ah(z) ghz h(Z)
for singular linear system. An exmple from, this dan is the aW(Z' Lk'~ r (5)
system described by the set of differene equations of the formA

Analogous to the results for the usual inear syst case reported
=z" Axt + bu. (1) in 114,15,16,14, we have the following lemma.

us =~.,(2) Lem-a 2.1 Define the sectors

wbere Eisa singularsx xn atrix sucbh at the senimtate ector 1(z) = (zE -A)-'b (6)

z6 eis defned implicitl.We rtrict the dincUtisshere to g(z) = (zEF-A)-'. (7)
the discrete-time, single-varie case for brevity, but much of
the following developtneut can be extended to the continuous- '"
time and multivariable casws di(z) - hI(Z)_

In the sma liear systemn case, where £ = L. it is well known 86 g(Z); -c f(z) (8)
that statie-variable models are not unique. Any two minimal (Zah)
stame-pae realizations of a given tr~nans function ar OhbL) = g(Z)ff(Z)r 3Z) *' ~f~) (9)
by a similaity tiaauformation. iLe., by a change in basis for the rd

stateepac& In the singular came. howeve, minimal realizations Pr'oof. The exessons in (8) ame obvious generalizations of
are not Deesarily related by similarty. The set of admissible thase in [14,15,16,171. The excpressions in (9) ame proven using
trAnsforuation is mudchrger. 'nos, determining opia n- Kronecker matrix algebra, 13,41ja follows:
sitivty relizations for the singular ca i Don-t1W131 eteion aA(Z) - I BzE - A)-' 1 ~b
of exutig theory for the usual linar ae. =~,~ V.&- ~ r (.0

An ounem of the paper a an follows. We begon by defining
senitivity memw in a maniem analoou to the usual liniea = (I. @c(zE- A))U(h(I. O(zE- A)-'b),

rW)4 7R/YY'L 17 1 onflr 1 qp9 r 1337



where U.. = T, " Ea, S, E., and E,, is an n x n matrix where 1(z) = z. Letting {f,} and {(g} denote the inverse z-
with uniy at the (i, k) position and zernes elstwbere. Thus, transform of f(z) and g(z), respectively, it follows from Parse.

r val's theorem that
-S-r"'&Ah ) 2 = j Ijg(z)I' z'dz (IS)

- I. ®bT(2 ET -ATIU*((r~ .r~

= " (16)
= (I. ® r( zE - A)- ')( ,Er - Ar)- T a f.) 1 -z

and

= f(zg r - Ar)-cT ® (br(zEr  - At)-'  )21
-(zEr~ AT )_'erbT (zE't  At)_, If!~l - I! (lfz)zI:.rz' dz (17)

= g (z )f (z ) = W +I, +. ( 1 )

ka-sW8/xtz) _ 8hz-')z-'=_(_,r( ): =-ozf ),
- ----- - = .) =f" (19)

where h, j and j are defined by (3), (6) and (7), respectively, ( h . i
with the roles of A and E interchanged. a(Note that Ill"- = lf J,-Thus, M is bounded above by

Since ultimately we wish to optimize a esaar measure ofsen- M'= 2 r. f&4 - gtg + jr f.h + g9i (0
sitivity, define the following integral measure for matrix valued - W"4 &- =-cc
functions of z Al = M' if and only if there exist scalar a such that g, = of

for every integer k.
1lC , = fG(z)l1,z"' dz , (10) For singular systems the expressions for f, and gt can not

/j ) Ibe. given expcily in terms of the realization parameters (as is

where 11 Iljt denotes the Frobeius norm. By Parseval's theorem the case for usual lhear systems). However, the sequences can

it is clear that the norm 11 j1, is a matrix generalization of the be represented implicitly in terms of the system's fundamental

usual 1, norm for sequence space. When p = 2 such a norm mtrix 111,12). The unique Laurent expason about the point

has the physical interpretation of energy. The scalar sensitivity at infinity of the resolvent matrix (zE - A)-' is given by

measure, M, is defined as (zE- A)-' = :- -21)

= E ' ' +ll +b j(1)" where p > 1 is the index of nilpotency of the matrix pencil
(zE- A). The fundamental matrix {q,} satisfies the recursion

This is a generalization of the sensitivity measure developed in relations
114,15,16,17] for state-space realiza;ions. The use of two different
matrix norms in (11) is strictly for mathematical convenience. E, - AO,_- = 4mI (22)

Rather than minimizing M directly, it is more tractable to
minimize a particular upper bound on M. We refer to the re- OE -,A = 4, . (23)

salting realizations as bound-optimaL Observe that (6,k is the Kronecker delta.) In terms of the fundamental matrix,

{f&} and {g&} are expressed as
- - -) Ilg(z)fl, if (Z)(,. (12)

CIA k =61,bU.,(24)
Thus, it follows from the Cauchy-Scbwarz inequaliby that = us.., (25)

8 2 Z%11 1 h,.z ) where u, is the unit step function. Hence, another expression6 2f, &A fllor M'is

-- 2 I71 F A- 2 7

Go

2 lig(z)I; r .dz.2 /Hf (z)l,; z_, dz 6 " ~+ ¢,c .  (6

2 1,Jr2rJ I k
(3) IFor the usual linear system case, dt = A' for k > 0 (zero

2III Vi (13 otherwise) and p = 1. In this cawe, the summation involving
Likewise, b in (26) can easily be shown to be equal to the trace of the

reachability gammia Likewise, the summation invohing c is
2ol 2 1 If . .,,, _, equal to the trace of the observability grammian The set of

- , <  y ][g(z)(;. z" dz. ilf{):,, ;= d: bound-optinal state-space structures are those that minimize

Ig lIf" , (14) M . I,,, =0 (27)
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over all possible realizations. The bound-optimal set is charac- Definition 2.3 [1,13] For the system (1)-(!) with :E- A 1$
terized by the property that each member has its reachability 0, define the forward reachabilty and observability matrices as
grammian equal to its observability grammian. Such realizations
are said to be essentially balanced 18,181. In order to establish 2,(E,A,b) = [ob 0-,,b ... o_,b Oob 'jb ... 0,b
an analogous result for singular systems, we wish to express M"*3)
in terms of grammian matrices. There are at least two ways and
to define the reachability and observability grammians for sin-
gular system. Each definition ultimately depends on how the
concepts of reachability and obeervability are extended from the
nonsingular to the singular case. This is still an active area of O,(E, A, c) = (40)
research (1,2,6,7,11,131. Consider first the reachability and oh- co
servability matrices defined by Lewis in (11,131. The subscript co,
'r, indicates that these definitions follow from the notion of
reachability and observability in the symmetric sense.

Definition 2.1 [il] For the system (1)-(2) with I zE- A Ii 0, respectively, for some non-negative integer i.
define the symmetric reachability and observability matrices as

( 00b 0 ... o In terms of the forward reachability and observability matri-
2s.,(E, .A, b) =bb (28) ces, the natural definitions of the reachability and obeer'vability6__b ... 0,6- rminargve below.

and
coo cO--, Definition 2.4 For the system (1)-(2) with I zE - A ji 0,

(,A. c) - (9 define the forward reachability and obeeruabiity grnmmians as10,(,A )= ,('2-M
i CO_2 P. = 2,2 -, (41)

repectiv dy, for some non-negative integer i. and

In terms of the matrices in the definition above, the natural Q =C'C," (42)
definitions for reachability and observability grammians are as rwpectivdy.
follows. It is easily verified that the steady-state forward grammians

Definition 2.2 For the system (1)-(2) ith I zE - A 1$ 0, (when the limits exist)
define the symmetric reachability and obseroability grmmmians
Ms P u~m llPs E Okbb~ (43)

Ps.. = ,s.,l (30) ,=.p
and Q., =C 0 50 (31) (44 lirQ, = ()

i--u

It is easily shown using (22) and (23) that the steady-state satisfy the equations

grammians (when the limits exist) EPEr = APAr + (E~ObbrorEr - A6_, 1 rO_, Ar ) (45)

Ps - ,limPs"= ;. E W. bbr ' rr ](32) ErQE = ArQA+(Eroc ,oE-Arocr _,A).(46)

Qs " ir j =L [ rcrc. For the usual linear case, equations (45) and (46) reduce to the
3 ,-c.= 0 _, (33) familiar Lyapunov equations. (Note that Definition 2.4 is closely

related to, yet distinct from, that given by Bender in [I. The
satisfy the matrix equations main difference is that P and Q as defined above will always be

non-negative definite.) The main result of this section is now
,PsZL = APsA (34) given in the following lemma.

EQ SE, = A; s,., + CEA, (5) Lemma 2.2 For the system in (1)-(t), the sensiti 4y measure

where M satisfi the inequality M < MI, where

EA =A 1 (36) M' = 2TrPTrQ+TrP+TrQ (47)

= [O bbr o r  0 r= 2TrPsTrQs+TrPs+TrQs. (48)

0 0_ , Proof. Substitute the definitions for P and Q into (47). Equa-

tion (48) follows directly from (47), since Tr Ps = Tr P andirr 0 re • 181 Tr Qs = Tr. a.

Another useful reachability-observability grammian matrix

pair comes from the following definition.
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III. MINLMU'M SENSITINIMY REALIZATIONS Theorem 3.1 Mi is minimized over 7 E for arbutrary fixed E

We first consider the problem of minimizing M' over all only fEP = QE. (57)
minimal realizations of a fixed transfer function hlz). in view of
J4), the effect of a transformation pair (U, V) on the gramiians Proof. First consider minimizing the product Tr P Tr Q over
Ps and Qs is given by the action 7r. Define a Hamiltonian

*s GL2(R) x (*2*K)2 . (R2..2.)2 H = Tr(V'Ipv-r) Tr(U'QU) + ATr A(EV - UE), (58)

(UV) x (P,Qs) -(f'-'P V-', L"QsC), (49) where A is the Lagrange multiplier and A is any orthogonal ma-

where C = 13 @ U and f' = I_ e V. Similarly, the effect of a trix. A necessary condition for an extremaI is
transform pair on P and Q is given by 9H =

GLI,:x - au"-2  = Tr ( Vp T) 2(Q - AEA =- 0 (59)

(U,V) x (PQ) -(V- 1 PV-,LQU). (50) __-_ = (-2V-'PV-7'V- ') Tr(UQU) + AAE = 0. (60)

Since (UV) can be selected arbitrarily from GL2.(R), then for Eliminating A and A by combining (59) and (60) gives
some given (P, Q) apply the transformation

Tr (UrQU). EV-'PVT - Tr(V'-PV-T ) • UrQUE. (61)

£ Thus, the optimal transformations (U, V) will generate a matrix
with c > 0. Then, pair (P, Q) such that

M' () = 2c'Tr P Tr Q + c2Tr P + c2Tr Q. (52) Tr(Q) EP = Tr(P) QE. (62)

Thus, the sensitivity measure M can be made arbitrarily small Now observe that for Don-negative definite P and Q
since 0 < M < M'(t). This is a phenomena that does not
occur in the usual linear system case, primarily because the set Tr P + Tr Q 2 2(Tr P. Tr Q)', (63)
of similarity transformations

with equality if and only ifTrP = TrQ. Hence, minimizing the
$ A {(U, V) E GL2. (R) I U = V( (53) full performance index

is much more restrictive. Observe that (IT, V) is not an elementof $.M := TrPTrQ+TrF+TrQ (64)
of S.

From a practical point of view, the transformation 0w...) is requires Tr(Q) . EP = Tr(P) -QE and Tr P = Tr Q. a
not very useful. The resulting realizations for small values of e
would have poor quantization properties since the components In the event that E = 1, it follows that those realizations
of E and A could be made arbitrarily large relative to the cam- satisfying (57) are the essentially balanced realizations of 18,18]
ponents of b and c. The problem herein is to sufficiently restrict or those specified in 19,10,15,16.171. If E has the form given
the set of admsible transformations such that the problem has in (54), then it follows easily that any bound-optimal realiza-
a meaningful answer. There are many possibilities. We shall tion (E, A. b, c) has a corresponding matrix pair (P, Q) with the
consider the problem of minimizing M' over the set of general- structure
ized state-space transformations having the same fixed E matrbL .r
For example, in studying the solvability of singular systems or Pf= 0 ]; Q= 0 ] (65)
in realizations methods researchers often use the s*-called semi- 0 P1
ezplicit form of (1)-(2), where E is fixed to be where Z E rxr and PD, Qv E Choosing (U, V) E

0(54) ,- such that

and 0:< r < n (see [5,191). U [0 a...' =- (66)
Define for arbitrary fixed E, the se: of transformations leav.ing E invariant: rives for small vaues of , > 0 the app..axati.

T= {(U, V) E GLs (R) I EV = UE}. (55) M tTr7 TrTr T+Tr- 2 T' T +TrT-'-T. (67)

When E = I then clearly 7E = S. To perform the minimi-tion Letting A, denote the i" eigenvalue of and using the methods
of M" - Miover T, we employ a generalization of the Lagrange in [14,15,16,17[, it follows directly that
multiplier technique given in [8,18J. The method allows one to 2adjoin a matrix constraint to a scalar valued performance index ( A)S (
by using the following lemma. + 2 At. (68)

Lemma 3.1 For arbitrary matrIce X and Y, Furthermore, there always exist T E GL,(W) such that this lower

Tr A(X - Y) =0 (56) bound is achieved arbitrarily closely.

for all orthogonal matricu A, if and only if X - Y.
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IV. X dP-

The problem of determining minimum sensitivity generalized
Cusider the problem of determining the minimum sensitivity state-space realizations was considered by first deang ai sensi-

generalized state-space realization of the right-shift operator in tivity measure analogous to that for the usual linear system
semi-explicit form. It is easily verified, for example, that h(:) - case. The minimization of the measure was then shown to be
z can be minimally realized by a meaningful problem only if the set of admissible realizations

r r 11was significantly restricted. An interesting example of such a
E = 1 0  A= I restriction was the subset of transformations which keep the EL0 0 [ A0 matrix invariant. In this case, the optimality criterion devel-

oped was an extension of the known result for the nonsingular
b = case and led to the notion of an essentially balanced generalized

state-space realizationL The theory was appiied to the minimum
The corresponding fundamental matrix is given by sensitivity synthesis problem for the right-shift operator.
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Abstract H. The Singular System Hankel Matrix

The system Hankel matrix plays a central role in realiza- A singular linear system of difference equations
tion theory for linear time-invariant systems. For example, each Ex,+, = Ax, + Bub (1)
full rank factorization of the Hankel matrix into a reachability-
observability matrix pair is uniquely related to a minimal state Yb = Czb (2)

space realization. In addition, factorizations derived from the
singular value decomposition of the Hankel matrix are assci- by m rational transfer function matrix H(z) when

ated with balanced realizations, which are known to have optimal

parametric sensitivity properties. In this paper, a system Hankel H(z) = C(zE - A)-'B. (3)
matrix for singular linear systems is defined and, in an analogous
fashion, used to develop a realization synthesis method, define In the usual linear system case, where E = I, it is well known
a balanced generalized state space realization, and characterize that state variable models are not unique. Any two minimal state
those realizations which have minimum sensitivity properties. space realizations of a given transfer function matrix are related

by a similarity transformation, i.e., by a change in basis for the
state space. In the singular case, however, minimal realizations

1. Introduction are not necessarily Mated by similarity. The set of admissible
transformations is considerably larger. Any matrix pair (U, V) E

GL ( -  Ld) x GL4(R) will provide another n'  order
Developing a complete realization theory for singular linear rl() A G x by pplinthe actio

systems has provided some challenging problems for researchers.

There has been significant success in the development of algo- 0 : GL.(&) x E.(&) - E.(R)
rithms for minimal realization synthesis from given input-output : (U, V) x (E, A, B, C) .. (U 'EV, U"'AV, U-'B, CV),
behavior [3,4,6,7,181. Theory also exists for characterizing mini-
mality [8,171, reachability and observability [1,12,13,14,161, and where E.(!k) is defined as the set of all n'" order realizations.
determining canonical forms [5]. But a strong unifying realiza- In general 0 is not a similarity action since U and V may be
tion theory for singular systems comparable to that for the non- distinct.
singular case has yet to be presented. A solid realization theory For a given realization (E, A, B, C), the corresponding fun-
is certainly a prerequisite for deriving physical interpretations of damental matrix {Ok}bj-, is defined in terms of the unique Lau-
realizations, as well as understanding computational structures, rent expansion about the point at infinity of the resolvent matrix

In this paper, a Hankel matrix approach to singular linear (zE - A)-'
system realization theory is presented, which is analogous to the (xE - A) - ' = z-  (4)
methods of Kung for the nonsingular case [ 11. The focus is ,.
exclusively on discrete-time or descriptor systems. Motivated where i 1 is the index of nilpotency of the matrix pencil
by definitions of reachability and observability, the notion of a (zE - A) [12,131. The fundamental matrix is known to satisfy
system Hankel matrix is first defined. The system Hankel ma- the recursion relations
trix is then shown to have reachability-observability matrix fac-
torizations which can be used to solve the realization synthesis E4.O - A b- = I (5)
problem. Next, the notion of a balanced realization for singu- OhE - -IA = 4,.I. (6)
lar systems is derived using the singular value decomposition of
the system Hankel matrix. The final section gives an applica- (bib is the Kronecker delta.) Furthermore, equation (4) implies
tion of this theory for synthesizing realizations which have min- that the corresponding transfer matrix, H(z), has a series rep-
imum parametric sensitivity properties. It is demonstrated that resntation

such realizations are related to the notion of balancing. Analo- H(z) = Hjz-', (7)
gous connections exist for the nonsingular case [9,191, and such
a connection has been demonstrated in the singular case by a where
completely independent method {I0. H.= C0,B. (8)
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Hence, we shall refer to the sequence {Hj),._, defined by (8) as Proof. Viewing M[i,j] as a 2 x 2 block partitioned matrix, it
the generalized Markov parameters for the system (1)-(2) 1151. is clear that the block matrix in the lower right position is the

The notions of reachability and observability for singular By&- Hankel matrix for the strictly proper portion of H (z), say H., (z).
ters is an active area of research [1,8,12,13,14,161. The possible It is well known that H.,(z) has a finite dimensional state-space
noncausality of (1)-(2) makes the extension of these concepts realization if and only if its corresponding Hankel matrix )4,[i,il
nontrivial. For the purpose of factoring the system Hankel ma- has the property that there exists positive integer r such that
trix, it useful to define the notions of forward reachability and p(X..jr + i, r + jj) = r for all ij = 0,1, 2,.... In view of the
observability as given below. Weierstrass form [131, if A is finite then the necessity condition

follows directly. The sufficiency condition follows from the fact
wdeachabo e 2.1 [11 A eulr sER,te ere eiss aiter that when both nontrivial submatrices of [+oo, +oo] have finite
ward reachable if, for every z E w', there e an inteer rank then a finite dimensional generalized state space realization

can be constructed by known algorithms (see for example [6])..

Definition 2.2 [14] A regular system (1)-(2) is said to be for-
ward observable if there ezists an integer i > 0 such that if
the zero input response {yk}_'. is precisely zero then Ezo = 0. Lemma 2.3 Every realiaion (E, A, B, C) of a given transfer

matrix is r.ated to the system Hankel matrix via the equalit

The following tests can be used for determining forward reach-

ability and observability. -lfi,j] = OERj. (9)

Lemma 2.1 [14] A regular system (i)-(B) is forward reachable Proof. The result follows directly from the definitions using the
if and only if the forward reachability matrix property

.... ... -'O,+ :i<0, i<0

R,(E, A,B)= B).[ _. ... 0-B qoB ,IB .. ]i - = .,~ :> o, j.2:0o

has rank n for j = deg(I zE - A ). 0 otherwise

Lemma 2.2 [14] A regular system (1)-(2) is forward observable which is proven in [141. a

if and only if the forward observability larix - This factorization is the natural extension of the result known

for the usual linear system case (E = I). A surprising property,
however, of the generalized Hankel matrix is that it only specifies
the system uniquely modulo a feedforward component. That is,

the parameter Ho does not appear in )[ij]. The consequences
O.(E, A,C) = C_ of this fact will be discussed in the next section. Also, note in(EA, Co reference to Theorem 2.1 that

p(E) 2_ p(k[+oo,+oo]) = v (10)

C40i for any realization (E, A, B, C) of H(z). Furthermore, it follows

has at least the rank of E when i =deg([ zE - A). directly that

Consider the following definition. (s - 1)p(H__.+) + r < v < (p - 1) min(p, m) + r. (11)

Definition 2.3 The system (block) Hankel matrix for a given When (E, A, B, C) is a minimal realization with n A n.. then

rational transfer matriz H(z) is defined as r = deg(I zE - A 1). (12)

0 0 ... 00 0 -H... From the characterization of n,,.. in [61 a simple calculation gives

: p(H_.,) +r < n.,. A min(p, m) + r. (13)

x[ij] H H, ... H-+1  By assumption H_. is not identically zero. So in the case

0 H, H3 Hj+ where min(p,m) = 1, the inequalities (11) and (13) combine to
give

H,., 1  H, , ... H,+ n_. = v + 1. (14)

Theorem 2.1 The system Hankei matrix for a given rational
transfer matrix H(z) has a finite dimensional generalized state- III. Hankel Matrix Realization Theory
space realization if and only if there exists non-negative integers r
and Y such that the rank p(Mfr+i,r+j]) = v for all i = 0, 1,2....
and j = 0, 1,2,.... In this section, a realization theory and algorithm is pre-

sented which is analogous to that given by Kung in [il) for clas-
sical linear systems. That is, we wish to consider the problem
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of extracting generalized state space realizations from appropri- In fact, this interplay between the direct feed term in the semi-
ate factorizations of a given system Hankel matrix as suggested state equation and that in the output equation is arbitrary. If
by Lemma 2.3. The general algorithm presented herein is not one sets the direct feed parameter in r., and L., to any compat-
viewed as being particularly efficient or stable, but rather as a ible matrix A and then compensates by adding the direct feed
theoretical tool to exhibit some of the stru'.ture of the realiza- term (Ha - A) uo, to the output equation, the transfer matrix is
tion theory. The extended theory is considerably more complex invariant.
due to the singular nature of E. For example, unlike the non-
singular case, not every factorization maps to a corresponding
realization. Consider the following definition. IV. Balanced Generalized Realizations

Definition 3.1 A factorization N4i,i] = OER, of a given rank
to system Hankel matrii where E E Rol, is said to be consis- It is well known in linear system theory that a balanced re-
tent if alization of a given transfer matrix can be extracted from the

n > singular value decomposition (SVD) of its system Hankel matrix
is. n>an.,j [1111. More specifically, the SVD can be used as a tool for com-
ii. rank(fi[i,jj = rank(E), puting a special set of factorizations of the Hankel matrix which

iii. OER- r,= O.ER, - ,has the property that all corresponding realizations yield equal

where r,3 is defined as and diagonal reachability and observability grammians. In this
section, the extension of this idea is considered for the singular
system case. It should be mentioned that the notion of balanc-
ing for singular systems has been defined in [101, but in a quite

H-1 tdifferent context. The following approach is consistent with this
r,,= 0 ... 0 Ho 0 ... 0 (15) earlier definition, but is considerably more direct.

H, In terms of the forward reachability and observability matri-
ces, the natural definitions of the reachability and observability

A . grammians are given below.

Definition 4.1 For a regular system (1)-(R), define the for-with the u1 block column being nonzero, and L, similari defI ned ward reachability and observability grammians as
with the ,, block row being nonzero. The notations [-]- an [.Jt

represent the block column left shift and the block row up shift Pi = eZ (25)
operators, respectively.

and
A consistent factorization (0,E, Rj) has the property that at Q, = of0,, (26)

least one realization can be synthesized from it. Observe, from
equations (5)-(6) it follows directly that respectively.

ER- = A.+10... BO ... 01 (16) It is easily verified that the steady-state forward grammians
E = A + [0 ... 0 B 0... 01. (17) (when the limits exist)0,E= OA+[0...0CT 0..0]T . (17)

Premultiplying equation (16) by 0, and postmultiplying (17) by P rim P - bb rh (27)
R, gives -

OAQ (1) Q limQ= (28)

O, ER, = OAR, + L41. (19) satisfy the equations

Thus, the remaining realization matrices are given by EPEr = APAr + (EOBB?.Er - A_BBr.01 Ar)

C = the is block row of L R (20) E'QE = A7QA + (Er. rCrC E - Aro_

B = the ju" block column of or,, (21) For the usual linear system case, these equations reduce to the

A = 0 (0,'E - [0 ... 0 Cr 0...017) (22) familiar Lyapunov equations.
= (ER 7 -o...0 oBO...oD)Rt, (23)

Theorem 4.1 The infinite system Hianke matrix X[-$-oo, +oo]
for sufficiently large i and j and where [.it denotes a psuedo- with rank corresponding to a given rational trnzfer matri

inverse. These realization matrices are uniquely specified if p(0,) H(z) ha a conesent fatorization of the form

= P(,R) = n. That is, when (E, A, B, C) is both forward reach-

able and forward observable. 0 - UE0';2 1 R = E/V(29)
It is of interest to note that since the system Hankel matrix

is not a function of H0, the direct feed term, one has the option E=[I1 01 (30)
of setting Ho M 0 in the assignment of I', and Lq, above and 10 01'
then compensating by adding the known direct feed term to the where E'/ and EXZV2 are full rank diagonal matrices and U'rU =
output equation, i.e., VTV = 1.

Y, = Cz, + Hou. (24)
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Proof. The singular value decomposition of Mj+oo, +ol is Definition 5.1 A realization I" E M,.(f) is an extremal sen-
E+-2V( sitivity point of 1*(f) if and only if e is an etremal ol the

[1o U " = [ 2 O ' ( 3) e rmance index L(O) = 1 Vf [2 over the manifold Mh(f).
- U[ 0  0 0 [ 0 ] V r , (32) The following Theorem (see [9,191) gives a necesary condition

satisfied by all extremal points in the event that the metric ten-
where tE 3  ~ ..... and /'2 ~sor g on 9 is taken to be uniform (a typical assumption in the
diag(,/-,... , vF-.,, VW,..... ) with the a.'s and /-'s as analysis of fixed point arithmetic).
nonzero free parameters. (0 denotes a compatibly sized zero
matrix.) This decomposition leads directly to the factorization Theorem 5.1 If a realization r" E e is an cetremal sensitivity
in equations (29)-(30). This factorization is consistent since con- point then
ditions (i) and (ii) are satisfied by design, and condition (iii) can (Vf (r) - \)Vf"(r) = 0, (34)
be shown to be satisfied in the limit by direct substitution of where Vf(#') and V'f(#*) are the gradient vector and the Hes-
equations (29)-(30) s sian operator, respectively, at 0', I is the identity operator on

the tangent space T. 0 and A E W.
Corollary 4.1 Any factorization of the form given in Theorem.1 has the property that all corresponding realizations have for. In other words, the gradient vector of f at 9* is an egenvec-
ward reachability and observability grammians such that tor of the Hessian matrix at 0'. The stated condition is the

Euler-Lagrange equation for the constrained optimization prob-
EP = QE = EEt = EoE. (33) lem. The type of extremum is easily determined by the definite-

Definition 4.2 Any realization (E, A, B, C) satisfying equation ness of the second variation.(e) is said to be a b eal ization. To cast the minimum sensitivity synthesis problem for singu-
lar systems in the geometric context described above, we must

first identify the relevant realization spaces. There are in fact two

V. Minimum Sensitivity Realizations general realization spaces we shall consider: the space of all n t*
order generalized state space realizations (E, A, B, C), 1E.(a),
and a space related to all consistent factorizations of all possible

In this section, we consider the problem of finding minimum system Hankel matrices with rank < v, fn,. E. is clearly iso.
sensitivity generalized state space realizations of a given ratio- morphic to a closed subset of !R2'2+-+". To define the second
nal (possibly noncausal) transfer matrix H(z). This problem has realization space, consider the mapping
been studied in a purely algebraic context 110), but the following
approach is geometric in nature and provides a natural applica- : IX(3) -. R +"" × x
tion of the realization theory described above. First, an abstract (E,A,B,C) '-, (O(E,A,C)E,EJ],(E,A,B)), (35)
geometric approach is briefly described for solving generic min-
imum sensitivity synthesis problems [9,19. Then the approach where ij 2 r - 1 are assumed to be fixed a priori. For fixed E,
is applied for the singular linear system case. the marginal map wit defines the following subsets of !R('')")x'

A generic realization space, say e, q defined tc 3e an aMine X " XW+' }" 1

space of admissible realizations (usually some subset of R ) with f.(R) ws
the structure of a smooth Riemannian manifold. Each point 0 c-
e corresponds to an admssible realization. In every modelling =
problem, there are invaiant. which are related to the observed
behavior one is trying to model, e.g. Markov parameters in fl 'J(R) - w)
the linear systems case or the Volterra kernels for more general
Volterra type systems. Using these invariants, called observables, where
it is possible to partition a realization space into equivalence E' (W) = {s E E.R) i [zE - Al #0, p(RZ,_.(E,A, B)) = n}
classes. Two realizations are in the same equivalence class if EI@(R) =
their observables assume the same values. ) E {s(R) I IrE - Al / 0, p(O,_.(E,A,C)) = n}

Assume that f : e .-. I is a smooth function that maps each El,"0(R) = E''() n Ef'(R).
realization to a corresponding scalar observable. Furthermore,
assume that f has no critical points in 0. Then if follows that ( ir and fo refer to forward reachable and forward obervba ble,
each equivalence class M,(f) = f-(k), k E f (), is a subman- respectively. Note that . (R) is only a subset of all possibleibiod of 6 with dimension s - i. The observable thus induces forward observable realizations.)

deoofmeowitonfh e di e ation s p-The iobsevabe st o indes In general, a group action on a manifold is said to be a foliateda decomposition of the realization space into a set of connected action if the orbits form leaves of a foliation. A foliated action is
submanifolds each with dimension s- 1. Such a realization space characterized by the property that the dimension of the isotropy
is said to be foliated, and the points in each equivalence class subgroup at any point on the manifold is fixed. The actions
make up a leaf of the foliation.

The parametric sensitivity problem is posed as follows: at :GL.(M) x E.
which points (realizations) on a given leaf is the effect on the
observables of a parametric perturbation extremal ? Ov each (UV)X(EAbc)-(U'EVU'AVU'BCV)

leaf the gradient of f defines a smooth normal vector field. At and
each point 9 on a given leaf, the metric tensor g on 6 induces
the norm 11I: T. - : v - V0iIV) on the tangent space GL.(*) x fl.(R) ,-- fl.(R)
TE. . (U,V) x (0E, ER) (OEV, U-'Ek)
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,A on E,(3)and flr(R), respectively, are not foliated actions It is interesting to note that this computation is possible even
unles restricted to forward reachable and observable subsets though 0 and R can not be determined uniquely from OE and
r",'(R) and fl,(), respectively [9]. ER due to the singularity of E.

An orbit in either realization space E. ) or fl () under The computation of the Hessian matrix is not so obvious since
its group action is characterized not by one observable but by the gradient vector is not an explicit function of 0. Consider,
several, namely the entries from the corresponding Hankel ma- however, that by the product rule (see 121, T4.3)
trix. Hence, we must slightly generalize the geometric method
described above. Define the following families of scalar-valued vec(OE) _ a 0 I)(Oi) = Er 9 I.
observable functions vec(o,)? avec(O)

vec((ER,)T ) a
I,(E,A,B,C) = TrA(M-O(E,A,C)Ee(E,A,B))(36) avec(pY) = ave(Zr)(E .)vee(2, )j = E  -

f,( E, ER) = Ti A.(M - 0 ER), (37) Thus, it follows that

where A is any compatible matrix which has all of its singular '3e(O)
values precisely equal to unity. Note that if f, = 0 for all such (ET Y,)ec(OE)r = 4 (45)

i, then ) = 0ER (proof in [9,191). Thus, it follows that for L) 02. =

a given singular linear system characterized by a rank Y Hankel (E 0 4) - e = (46)
matrix M, the corresponding orbit in either Z.o(!) or ,,.,o(!) avec((ER,)') T

is uniquely characterized by A = 0 or f, = 0, respectively, for For brevity, let
all admissible A. If we express fA in component form

fA = A.(M - OER),,, (38) Do = avec(O,) D' e= c&((E,)_)" (47)

Then, by the chain rule (see [21, T4.6), it follows that the Hessianit is apparent that this family of observables is defined by the

set of constraints on the components of the OE and ER ma-

trices with each component of A playing the role of a Lagrange [ 0 -(I 0 A)Do 1
multiplier., I -(I 9 A)7Dt 0 J (

To characterize extremal sensitivity realizations of singular
linear systems, we should apply Theorem 5.1 to the observable The optimality condition, then, is as follows:

/A. This turns out to be a formidable problem. So instead we
shall work in the realization (factorization) space fni.f'(R) with ( ) - )Vfe) = 0, (49)

the goal of relating the solutions of the two problem by other r XIm -(I 40 A)Do 1 (1. 0 A)vfc(O,) 1 .
means. Applying Theorem 5.1 to the observable f, is a relatively L -(i, ® A)rDx - h, ] I -(I A)rvec(r) = 0
simple problem because it is a linear function of the components (I[)
of (OE, E2). Consider the following Theorem. Equation (50) gives directly that

Theorem 5.2 Given a singular linear system characterized by a Avec(O-) + Do(I g A)rvec(Zr) . 0 (51)
square Hankl maniz M(i, i], then eztremt sensitvity points on D&(Ij 0 A)Yec(Oi) + Avec(,Rf) = 0. (52)
the corresponding leaf of the foliation induced by the observable
family Premultiplication of equations (51) and (52) by (Er 0 .) and

f,(OE, ER,) = Tr A(M [i, i] - 0, E,) (39) (E 0 1), respectively, and applic...tion of the properties given in

have the property that (45) and (46), gives

ER , = O,',E. (40) (4 )vec()+(4.0A)rvec(,r) = 0 (S3)
(44 ( A)vec(O,) + A(E Q ,)veC(,rT) = 0. (54)

Proof. Use the optimality equation (34). In this case
It follows then that

[ R )] (41) XOE + Ar = 0()of vec(0,E) • = 0)

The observable function f, can be expressed in terms of a quadratic AOj +ARTEr = 0. (56)

form in I via Kronecker product algebra [21 as either Hence, the conclusion follows immediately using the fact that A
is an orthogonal matrix and A #0 . a

f,(G) = TiA(t[i,i] - (vec(RTE T ))T . (I. ® A) .vet(O,) (42) Thus, we concluded that minimum sensitivity factorizations
with E fixed in the form given in (30) have corresponding realiza-

or as tions that are nearly balanced (letting i --o oo) in the sense that
f,() =Tr A(Xs,ii - (vec(RT))T '(I,®A)'vec(OE). (43) they are only an orthogonal transformation (rotation) away from

being balanced. This conclusion is analogous to that reached via

With these representations, the gradient vector is computed as the earlier algebraic approach in [101 which worked directly in
the first realization space, rather than in this intermediate fac-

Vf (0)= -(I, 0 A)vec(0,) (44) torization space. When B = I, the optimality condition reduces
(, o A)Tvec(R (44) to the usual result for linear systems.
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REPRESENTATIONS AND REALIZATIONS

OF SINGULAR SYSTEMS:

THE TORTOISE AND THE HARE REVISITED

Erik 1. Veriest
School of Electrical Enineering
Georgia Institute of Technology

Atlanta, Ga 30332

The notion of system description or representation
is reconciled with system realization or The purpose of this presentation is to provide
implementation. By the latter a causal construct for some ideas towards the solution of the above sketched
obtaining the solution will be understood. The problem, with practical implementations in mind. Some
realization starts from a particular description, where new tools will be given, in particular the nonstandard
dynamical and algebraic equations are separated, and analysis. While still a young (a little more than
the dynamical states correspond to integrator outputs. twenty years) branch of mathematics, its presence has
Clearly such a description is nonunique. The optimal already been felt in the theory of differential
realization problem is then to find the particular equations. And while its name may insinuate
realization in the orbit of a particular group H, which abhorritions, it is not true that it lies outside the
minimizes the sensitivity measure in [7]. This group H "classical" domain of mathematics, nor is it in
is a subgroup, leaving the (separation) structure conflict with it. As expressed by Diener and Reeb (5]
invariant, of the group characterizing the orbits under in their introduction, the nonstandard analysis adds
restricted system equivalence. A practical -tev possibilities to one's toolbox by giving the
implementation is one for which asymptotically (in a existing tools more power. This paper will then also
well defined sense) the solution is obtained with a only be a rather modest exploration of a potential use
causal regular realization. The asyptotics are of nonstandard analysis in a branch of system theory.
obtained by considering sequences of systems, or as we Perhaps more inspired researchers will smooth out the
propose, via the use of nonstandard analysis methode. corners.

The behavior of the regularizing parameter is
determined by the structure at infinity of the original In this spirit, the differentiator is explored
singular system. As examples, a differentiator and a first in the next two sections, the last of which

purely algebraic set of equations are discussed, considers the infinte frequency behavior more closely.
The following section presents some general ideas
distilled from this case study. In turn this is

Introduction followed by a system consisting of pure algebraic
equations. An effort is made to compute (in a causal

way), solutions, or approximations of solutions to

In previous work on the sensitivity minimization singular systems. Some reflections are collected in
of singular systems (7], the problem of deriving the the conclusions, and an appendix given a short
realization of the singular system was attacked. This tutriall on nonstandard analysis.
problem is well understood for regular systems. Its .

practical significance is that in the presence of
parameter disturbances the response of the (perturbed) Case Study of a Sineular System: The Dtifer-ntiator
optimal realization is close to the nominal or desired
response. Now in following a similar programs for
singular systems one is faced with an additional The differentistor has a singular representation

problem of interpretation. What is an implementation
of a singular system? Realization in the pure sense
always means an implementation with integrators. As in
well known singular systems my exhibit net 0 : i-(1 Z1I :2 +[0u
differentiation. How is one to implement this? In 0 0 I
discrete time, the situation seems even worse, since
noncausal behaviour (i.e. advances) may result. On the
other hand. any simulation or computation is inherently y - [1 0] [xl,x 2 ]'
causal.

In this paper we shall try to reconcile the notion Symbolically, we shall represent the system in an
of system representation or description, and that of *open" form, as indicated in figure 1. Here two now
system realization or implementation. The latter will symbols are introduced, a destructor or black hole
always mean a causal construction, for instance using (or sink), indicated by the big dark arrow, and a
a universal Turing machine. Only when this problem is SaZA& or white hole (a source), indicated by the big
satisfactorily answered, and practical ways of white arrow. The idea is to let these symbolsomputicng solutions to so-called singular system have represent the algebraic constraints in the abovebeen found, will it make sense go optimize the 'system'. Thus the black hole MUST have a zero signal
Computation, and speak of minia. sensitiiy going INTO it, whereas at the "white hole, a signal isa poplmintarions. CREATED, here xl, which forces the black hole input to

be zero.

This work is supported by the U.S. Air Force under grant AFOSR-89-0241 and
Northwestern.
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Practically, this means now that if u(t) has

highest frequency components o - 2*f 0 , the

X1 implementation must be 'faithful* up to frequency 2wrf 0 .
X2 IFrom the above discussion, this requires

z2+ue4 1/(4r2fo
)

The implementation is then

- 2 - Xi

Figure 1. The "open form" representation. 
;- " Lz2+u)/c

So far we have only a new picture, but nothing ich has transferfunction

essentially new yet. Something new is obtained, at

least heuristically, If we think of the black and white H (s) - sL/[L-es
2

holes respectively as input and output of same fast

system, as indicated In figure 2, sitting "behind the

scene", and then relax the constraint that the black Faithfulness yields then that

hole input must he zero. He(s) - 5

- The above heuristic ideas thus seem to work.

"FAST' However some more quantitative work and precise

"- definitions will be needed. In particular it was

learned from the above example that in singular

problems, a regularization should be defined for which

the system becomes purely dynamical. As usual this is

done with some i-parameter which one lets tend to zero.

It is here however that problems arise. The behaviour

Figure 2. The "fast" system. when s goes to infinity is highly dependent on how c

approaches to zero in relation to a. In normal

mathematical parlance, when one considers extensions,

one considers sequences, introduces a notion of

Given a small deviation at the input of the "fast" equivalence, and then considers the equivalence classes

system, it then quickly changes the signal at the white as the extended set, wherein the original set is nicely

hole port, its output. Then one can hope that with imbedded by mapping an element x from the original set

this feedback structure, the black hole input will be to the sequence (x.x,x.x .... ). The construction is all

driven to zero. This sounds plausible in words, but too familiar from the construction of, for instance,

will it work? The problem is how to characterize the reals from the rationals. Here one identifies

"fasts. Moreover things wer discussed in some kind of Cauchy sequences approaching the same limit, i.e. the

a decoupled way. What will happen If the two systems equivalence class of all such Cauchy sequences defines

are connected? Will its solution converge in some the real number. However, this equivalence is too

sense to the solution satisfying the original coarse for some applications. Indeed, using Cauchy

representation? We answer some of these questions sequences, the notion of "rate o convergence" is lost,

below, 
as the sequences ({/n) and (I/nf

} define the same real

(0), but are clearly remarkably distinguishable.

First asswe that the 'fast* system is realized by It is in this sense also that the singular systems

are limit points of Cauchy sequences of regular

-" L(x2 +u)" 
systems. Such ideas have already been used by

Hinrichsen and O'Halloran in [8), generalizing the

idea of Young, Kokotovic and Utkin in [141 on high

This is an observer for a system with dynamics gain feedback. Only the behavior at infinity is

dxl(t)/dt - 0 . The factor c is used to indicate that ambiguous. This need not be so, if one takes the rates

the observer gain 1/c is actually very large. we Will of convergence of these Cauchy sequences into account,

quantify It later. If one puts this fast system as was clearly shown in the above differentiator

between the black and the white hole, the overall example. Indeed for some rates the behaviour at

transferfunction of the two integrator system is infinity will be identical to that of the singular

systems as described in (11]. Implementations (i.e.

Cauchy sequences of regularized realizations) with such

;i(a ) _ Lsu(s)/[s
2-l implied rates of convergence will be called faithful.

Clearly then we are faced with the problem of

Clearly this is different from the -eu(,) that would characterizing a singular system as a Cauchy sequence

be required to have differentiation from u(t) to y(t). of regular systems, while retaining the information

However one can make this work, if one can aIu that t regarding the rate of convergence, pertaining to the

is msch smaller than the modulus of I/s for the structure at infinity. We need clearly more structure

frequencies of interest. This tells us at once that to in our equivalence than is usually implied. It is now

consider the behaviour at infinity. e cannot approach known that also the real line contains much more

sero independoently from the way that s approaches structure than is usually Implied. The reals can be

infinity! 
imbedded in the "hyperreals". Hyperreals can be
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identified with the equivalence classes of sequences of The first one has the Smith-Mcdillan form
reals <ala 2 ... > . Two sequences are considered
equivalent if they agree &.a. (in a well specified
"&asure, based on the notion of an ultrafilter). The
hyperreals contain then the nftnitessimally small and

their inverses, the infinitely large numbers.
Nonstandard analysis seems therefore to be the right 0

framevork to analyze the realization problem for
singular systems. But before galloping too far, it thus displaying a zero at A -0. The e-uplementation
must be mentioned that everything that can be shown has the SuLith-Killan form
with nonstandard analysis can also be shown using
conventional tools, but at the expense of some more
work. Nonstandard analysis merely provides a [/A 0
convenient language. First let us consider again the
example of the differentLator in order to shed some 0 (2/L/A
more light on this idea.

Structure at infinity of the differentiator. Fait~fulness at A - 0 requires that A2 
- e/L Obehaves'

&I.A , implying in turn that a goes to zero faster than
A .

Consider an equation decomposition form of the The zero structure of the singular representatior is
dLfferentiator determined by the matrix

1* 0[: ; °1 0* 1 I Xi ;2 1 00x2
y - [0 -11 [Xlx 2 ]' For instance for the input decoupling zeros, we find

and its associated regularized representation (sE - A B)

r0 11 Ill ~0 1which has full rank for all finite a, implying finite1 0 ] ] controllability and reachability. At infinity, using a

0 2 L 0 x2 L Ebiue transformation a - l/A, the invariant factors
are found to be 1/A and 1, indicating the absence of an
input decoupling zero. Incidently, also note that

y - (0 -11 [x,x21' [EBJ has full rank, so that the realization is also
reachable at infinity [91[13].

Their polar structures are respectively given by (11] Now let us turn to the regularized representation.
The controllability pencil is now

* -,A --1 11 0

s-A -A - and it has obviously the same finite zero structure as
s the singular pencil, as long as a converges to zero.

The infinite zero structure is nov obtained from the
and since L o 0, the latter has the am (finite) zero zero structure at A - 0 of the reduced form
structure as I - 0. The zero-structure at infinity is
determined by the zero structure at A - 0 of
respectively1A [I ::

(I//)) -1 
1 

-
- 1  0 j Since we already established that a - A2, this shows

that the A-realization has no input decoupling zero at
infinity.

and
In fact note that at infinity, the system matrixr/ (1/) -lof the singular system and the realization have the

(/3- - m a=r structure (i.e. no zero at infinity), however
-L ~/~ their sinrusi structure differs.
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Reresentations and Realizations. and backaubstitute

Motivated by the analysis of the differentiator in B +-
our previous section, we now turn to the discussion of 1" (All A1 2AilA21 )xl (B1 A2 2 2 )urepresentations and realizations. Simply stated a
realization or implementation should mean a causal -C

implementation, say with integrators. Therefore, the Y " (C1 - C2 A 2 2A2 1 )xl
derivatives of all state-variables must appear on the
left hand side of an equation with coefficient one,
i.e. Erealization - I. A renresentation or description
is nothing but a set of equations (dynamic and Apolication to Purely Algebraic Eauations
algebraic) that must be satisfied by the variables in
the discourse: inputs, outputs and the x's. We refer
to these also as the generalized system equations. In this section we describe the namical solutionObvIously representations (descriptions) cary the of a set of linear equations y - Ax, where A is square
same information under restricted system equivalence and invertible. This is indeed a special case of the
[8]. On the other hand restricted equivalence cannot representation, having no dynamical elements, but
be allowed for realizations in the above sense. A containing 2n "states'. However, we can model this by
pseudo realization form is obtained by writing the some pseudo-realization
generalized system equations in the so-called Second
Equivalent Form (4], which dcouplea the dynamical
equations from the algebraic constraints. Thisrdecomposition reflects the physical meaning of [ 2
interconnected regular subsystems. l0 -

[lAll A1 2 ] B, iu and thus the algebraic subsystem has dimension n.

0][ A2 1 A2 2 1 x2 1 Bu The e-realization yields for the fast subsystem the0observer'

In contrast, the Weierstrass-form or First-Equivalent x -LAz/ + Ly/
Form seems to be more useful for characterizing the
solutions of the generalized system, and its associated
observability and reachability properties. An
equivalence leaving the above structure invariant is which has the solution
obtained by left and right multiplication by
respectively x(t) - A'Iy + exp(-At/c) (xo-A'ly)

[U11  12] an 11 ]For instance, the choice L - A' yields a balanced10 j V12 V2 realization (CV], if one lets c - 1. In this case we
22  2 actually have no reference for how fast *fast' really

is, since there is no dynamical eqation. This
where (UiV 22) EGl(n)xcl(n2), and v-Ul and balancedness is with respect to the disturbability dueV12 and U21 arbitrar to the measurement error, and the reconstructability ofy from x, thus respectively the equations

Nov obtain an implementable realization from the
pseudo realization by regularization. Because of its - A5
form we refer to this as the e-realization. This
simply means that an x2 is placed where the zero
appears in the pseudo realization. In view of the a
equivalence described above we shall just consider that
the algebraic set of equations is replaced by x - -AxA ; y - Ax

2L(A22x2 + A2 1 x + 32u)/ Their associated reachability and observability

2 grammians equal hI.

But notice that this is nothing but an observer, with
infinitely large gain L/s, for the system with state
x2, and (A,C) - (0,-A 2 2 ), receiving an "output-
measurement' y A2 1,x+B 1 u This fast' system is This paper characterized the implementability of a
observable if p2 2 ) -n 2 , i.e., if A2 2 has full rank. generalized system in ter of the ability to build anSince this rank is invariant under the above dscribed implementation that assymptotically remains faithful to
equivalence, lack of observability of the fast system the properties of the original description. The
cannot be overcome, unless a second regularization is practicality of this lies in the fact that all physical
brought into the picture, e.g. A2 2 -> A2 2 I, thus signals are inherently bandlimited, and themaking t hee system (0eA 2 2 +pI) observable. Notice tat description, more particularly its structure atgeneralized systems for which A2 2 has full rank are in infinity, gives then an idea of how "fast" practicalgeneraedzedaststepresentwhion2ofhregfulr syskear , in implementations should work. This way the tortoise canfact redundant representations of regular systems, outrun the harel Rates of convergence are important,
since we can always solve for and therefore we propose to use the language of

nonstandard analysis. This has actually not been done
-l (2yet in this preliminary version of the paper, as 'ex2 - '.Ail(A2 1 xl +5 2 u) were merely interested in demontating the feasibility

of an idea. For the purpose of an orientation in this
field, an appendix on nonstandard analysis is included.
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Appendix: Nonstandard Analysis it is the standard part. Next comes the nonstandard
solution which is usually finitary. Then one shows

that the standard part to the solution exists, and that

Nonstandard analysis is a modern approach to using this solves also the standard problem. Free movement

infinitessimals in analysis to express limits and its between the standard world and the nonstandard one is

derived notions. The theory is originated by Abraham allowed by the "Transfer Principle', and the *Standard

Robinson and modeled after Leibnitz's theory of Part" map. Such an approach eliminates much of the

infinitessimals. Its notion of "infinitely close" is burden of modern mathematical rigor, since it deals

useful in representing limits, not just on the real rather simply and in a more naive way with the

axis, but also in a topological sense, and even in infinitessimals and the infinitely large. In order to

contexts where the notion is not exactly topological, illustrate its power, consider the criterion for

This is the notion which will make it useful to study continuity in nonstandard analysis:

the theory of singular systems. Given f:& -> R, a standard function and x0  a

The essential ingredient of the nonstandard theory standard real number. Then f is continuous at x. if

is the observation that the real line allows for a much and only if

richer structure than it is usually endowed with.
Whereas classically the reals are defined as Dedekind V8-, f(xo+6)-f(xo)
cuts or Cauchy sequences, the richer structure is
obtained by a similar procedure, but using instead the The equivalence - identifies numbers that are

notion of a free ultrafilter. Hence, besides the usual infinitessimally close. i.e. x-y is equivalent to

reals, which will be called standard, the new set of stating that x-y is infinitessimal.
hyperreals will also contain additional "nonstandard"
-elements. Intuitively speaking the new elements build Of course it has the disadvantage that the language is
up a universe of infinitessimals near each standard, not yet common, especially to the nonspecialist who

real. Every element in this universe is infinitely should be using it.
close to the given real. Infinitely close means that
the distance is smaller than any nonzero ordinary
standard real. The fact that this is all brought on A very readable introduction to nonstandard

firm logical foundations, makes the rules for analysis is the recent book (in French) by Diener and

manipulating infinitessimals rigorous. But not only Reeb [5]. An approach via nonstandard analysis to

are *infinitely small" numbers brought in, the probability is for instance described in (10]. It

hyperreals also contain the 'infinitely large' numbers, contains a remarkably simple and concise introduction

the inverses of the infinitessimals. Once the to nonstandard analysis. Applications to singular

structure of the hyperreals is defined, it is possible perturbation theory of ordinary differential equations

to speak of nonstandard functions, operators, and other are described in (2] and [16]. As far as this author
mathematical objects in the same vain. Moreover, all knows, the only attempt to introduce nonstandard
the theorems of the ordinary standard mathematics apply analysis in systems theory was (3]. in the context of

in this enriched universe, provided of course that they instantaneous stabilizability and its robustness

are appropriately interpreted. This property is properties. The recent book (1] on nonstandard

referred to as the Transfer Principle, or Leibnitz's analysis has a chapter devoted to differential
Principle, as he proposed that all Infinitessimals operators. Its introduction deals with calculus,

should obey the same rules as ordinary standard numbers, topology and linear spaces in nonstandard mathematics.

Transfer Princiole It is this authors aim to see if by rephrasing the
The weak form of the transfer principle postulate singular system problem in the language of nonstandard

that for every standard formula F(x) having no other analysis, some of the obscurity presently cloaking the

free variables than x, we have theory cannot be eliminated, and thus its applicability

enhanced to a wider community.

Vstx F(x) - Vx F(x)
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Abstract will be called a transition functional From x-r, '-.

zero" reflects the time at the init[n[ s-r . , ,--a
For a class of randomly switched linear systems a of the stationarity of the switching procnee. - ,. ,.-q

transition functional is introduced. It is shown that of generality results from this. The set of ,' ',r
the expectation of this function at time t. satisfies a functionals characterizes the state tr-r. x1,r.
HYPERBOLIC partial differential equation, which plays a completely, and therefore the complete evoluti,,n -,' "n.
similar role as the backwards Kolmogorov equation for driven system as well. Here, u(t) is some a,,X11LAc 7
diffusions. Its formal adjoint leads to the forward signal, for instance the input. If u(t) - 0, a.d .P
equation. and their complexicy is determined by the Lie selects the i-th component of its argument, then . h
algebra associated with the set of values assumable by transition functional 9 is the i-th component of the
the dynamic matrix A(t,w). The usual PARABOLIC translation operator (4].
Kolmogorov equation is derived from this as a limiting
case. The result leads to Monte-Carlo simulation Main Results
methods for solving hyperbolic PDE's.

Consider the alternating undriven linear system
Introduction

dx(t)/dt - A(t,w)x(t), (3,

In this paper, the class of stochastically
switched systems is considered, where the system where the rand,)m matrix %(t,w) assumes the values A
parameters are piecewise constant, and assumes only a and A+ according to a raniom switching process. For
finite number of values, i.e. Z(t,w) e (Z1 .... ZN). instance the matrix process A(t) is patterned after a
The applications of such models are widespread: from telegraph signal, based on the number N(t) of random
target tracking, where the par-meter change occur as points in the interval [0,t). If this number is even,
changes in acceleration, bank angle etc., to fault then A(t) - A+, whereas if it is odd, then A(t) - A..
tolerant control, the different modes being associated
with different failure modes. These hybrid systems Define also the averaged dynamic matrix and its
have also been used as approximations for certain *excursion" respectively by A, - (A +A)/2
nonlinear systems [lj In this paper, N - 2, but the and 0 - (A+-A.)/2. An approximate solution of the
generalization is straightforward although of increased random system is first obtained by discretizing the
complexity. The switching phenomenon is assumed to time in steps of length A, and letting the switching be

occur at purely random times, and its stochastics commensurate with these sampling times. The matrix
stationary. Let the probability of a switch in an A(n&) can be expressed as
infinitessimal Lterval of length at be AAt. If N(C)
denotes the number of switches in the finite interval A° + enin. 1...in. (4)
[0,t), then it is well known that the probability that
N(t) equals k is given by the ubiquitous Poisson where In is a Bernoulli (1,-I) process, with Pr(-l) -
formula AA. A switching at step k corresponds then to 'k - -1.

Hence the state x(t), if A(O) - A+, is the limit for

Prob {N(t)-k} - e- t(At)k/k! (1) A-c/n - 0 of

Furthermore, if the switching times are ordered, 61 <  [I+(Ao+enen-.. - "ElD)fJlI+(Ao+en.1'n.2" "EiO)Aj'...
t2 < ... < tk , then the increments N(t2)-N(t), N(t3)-
Njt2 ). N(tk)-N(tk-l) are independent. Our method ...[I+(Ao+Cio)Alx °
generalizes a result by Kac (2], where the one-
dimensional motion of a particle with constant speed v, The state transition matrices P+ and P- follow
but wit', randomly (at Poisson times) reversing ± , [-+(Ao±ntn.l ... al)A ][_ + (A o± tn l tn .2 . .. Il )W ] ...

direction was considered, i.e, the first order affine 0 (5)

system dx/dt c (v,-v). In his paper, the expectation ...
of any function of the position was interpreted as a
solution to the wave equation, but with a "random path The expected transition functionals are now obtained by
time" substituted for the real time, followed by
averaging over all paths. This led to Monte-Carlo F(+)- B (Px], (6)

methods for solving the related Klein-Gorden 
equation,

which is significant in quantum electrodynamics, and and by taking the expectations over I, separately one
factors to the Dirac equation (31. derives the recursions

First we define the notion of a general transition
functional: F ,u" 1n x 1+ 3 R where 9 is a smooth FV(x) . (1.I)+((+(Ao)A)x] + XA.[(+(o0)A)xl

map (linear or nonlinear) from the state space an  to nn - (7)
R, and FVu implicitly defined by Fn(X) - (l-AA)Fn_1 [(I+(Ao-_)A)xj + AFn 1 ((i+(Ao+4)A)xl

F ,u(x,t) - p(x(t)) By reorganizing the terms, and taking limits for a - 0,

dx(t)/d X() - (2) one obtains the partial differential system

(a/at)Ftx,t) - (a/ax)Ftx,t)A+x + X[F~x,t)-Ftx,t)]

This research is supported by a grant from AFOSR and (x )
I'orthwescern. (a/at)F(x,t) - (8/ax)F(x,t)Ax + A(Ftx,t)-F~x,c)l
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Upon setting same effect as a diffusion. The drift is however NOT
the one given by thq averaged dynamics Ao, but an

C - [F++F']/2 (9) additional drift Dex is present. This can be
stabilizing or destabilizing, depending on 0 . For

H - [F+-F]/2 (10) instance if CIO has imaginary eigenvalues. stabilization
may occur, since 00 has then negative eigenvalues. If

this is equivalent to the system of PDE's on the other hand one has high frequency switching, but
p remains finite, then the stochastic energy (the

8C/at - (ac/Gx) Aox + (H/ax) Ox integral of IIA(t)A(t+)') is zero, and the dynamics of
(11) the averaged system is all that remains.

al/at - (4H/lx) Aox + (aG/ax) Ox - 2XH In the noncommutative case a higher order PDE for
F is obtained. Its structure depends on the dimension

Its initial conditions follow directly from the the Lie algebra, generated by A+ and A.. For
definition of G(x,t). Indeed, G(x,O) - Ev(x) - O(x), instance if the commutator of A+ and A is nonzero, but
since randomization over A(0,w) just gives the commutes with both, then it is known [6] that G
identity. The second set of conditions follows satisfies a third order PDE.

similarly from H(x,0)-O. This then proofs the
following theorem. For A-0, the equations are readily solved in terms

of the characteristics which are exactly the
Theorem 1. The evolution F (%,t) of the randomly deterministic evolutions according to the different
switched system (3) is given by the following pair of modes. For XoO, the solutions of the PDE are still
PDE's interpreted in terms of the characteristics, but via a

"random time operator" [6].
aFt/8t - (aF ./ax) Aox + 4as/ex) O "

(12) Summary and Extensions
aH/at - (aH/ax) AoX + (aFW8/ac) O: - 211H

It was shown that for randomly alternating

with initial conditions F (x,O)-V(x) and H(x,O).- 0. systems, a hyperbolic system of first order PDE's
describes the behavior of the system. From this, a

The coupled set of PDE's plays the role of the single higher order PDE results through elimination of
backwards Kolmogorov equation 5. Introducing the the auxiliary variables. The mechanization of this

first order differential forms at - a/at , 8 - elimination process and its ensuing complexity is

x'O'(8/ax)', at.d ao - x'A;(8/ax)', the following determined by the Lie algebra generated by the A(t)

special case can be deduced, values. By using the formal adjoint, this can be
interpreted that under some smoothness assumptions the

Corollary 2. If A+ and A_ commute, then the evolution density satisfies a type of forward Kolmogorov or

of the system (3) is governed by the hyperbolic PDE Fokker-Planck equation, which in this case is also of
hyperbolic type. It was shown that asymptotically, the

(8t 21-8)(8t-8)F, - (g) 2F, (13) parabolic equations of diffusion type result, if thelimits are taken in such a way that the stochastic
with initial conditions F(xO)-p(x) and 3tFP4x,0)-0. energy is conserved in the limiting system. The

a ) results presented here were for linear autonomous

Proof: Indeed, if A+ and A commute, then so do A and systems, but extend easily to the nonlinear driven case

n. But then the differential operators 80 and a, with markovian switching between a countable number of

commute, and upon elimination of H(x,t) one obtains the models.

PDE (13). That the initial conditions are as statedfollows also from the main theorem. Finally, one can reverse the ideas and develop
stochastic solution methods for hyperbolic PDE's as was

If p+ and p" represent the conditional density done for parabolic and elliptic ones based on Dynkin's

(assuming it exists) of x(t) given x(O)-x, and A(O) equation [5]. Indeed, such Monte Carlo simulation

respectively A+ and & then it follows from methods, are not based on the stochastic evolution in
- tethe (narrow) Ito sense (i.e. based on an underlying

8/8t<p+, ,> - <p+,[x'A(a/ax)-X]p> + <P-,Xw> Brownian process), but on a counting process.

- <-8/8x(A+xp+)-Ap+,> + <Ap,p> (14) References

that (in the weak sense) [1] E. I. Verriest and A. H. Haddad, "Linear Markov
Approximations of Piecewise Linear Stochastic

+ - -(A~xP+)-A(PP,) Systems", Stoch. Anal and Anal Vol. 5 (2), 213-
(15) 244, 1987.

' - ) (21 M. Kac, "A Stochastic Model related to the
Telegrapher's Equation". Rocky Mountain Journal of

The density of x(t) is finally obtamirned by p(xt) - Mathematics, Vol. 4, No. 3, 1974. pp. 497-509.
[+/ [3] A. A. Sokolov, I.M. Ternov, V.Ch. Zhuborskii and

(p+(x~t)+p 2 A.V. Borisov, Quantum Electrodynamics, MIR 1988.

Using arguments similar to the ones in [1, it can [4] M. A. Krasnosel'skii. Translation alonr
Usn ruenssmlrtoteoe n '1.i a Tralectories of Differential Eauations, AMS

be shown (6] that this equation has an interesting Translations, Vol. 19, 1968.

asymptotic form for A-.- and A(t,&.)-Ao(t,w) with p (] a s s, Tor. and A9s8.
such that j Ai etcnsat( a) Indeed, a (5] Z. Schuss, Theo=y and Applications of Stochas, la

suc tht p/A is kept constant (Q say). Ide, Differential Eguations, Wiley 1980.
PARABOLIC PDE results, which is the equivalent to the [6] E.I. Verriest, "On a Hyperbolic POE describing the
Ito-differential system where w(t) is a Wiener process Forward vltion a Clas of dml ithe• Forward Evolution of a Class of Randomly Switched
with Ew(t)w(s)-Q min(t,s). Systems and Connections with the Kolmogorov

dx - (Ao+n2)x dt + 0ex dw(t) (16) Equation and QED*, Proceedinrs of the 1990
Conference on Information Systems and Sciences,

Clearly, the "Jittering" caused by very fast switching Princeton University. Princeton, March 1990.

over very large amplitudes in the direction a. has the
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Absract tion that is best suited for implementation or
perhaps is less sensitive to word length effects,

In this paper we study the dynamics of time- limit cycles, etc. Our main concern here is to
homogeneous Markov chain models from a develop a 2-D realization theory that yields a set
state-space modeling point of view. It is shown of equivalent state-space representations for athat a Markov chain model can be embedded in given Markov chain model. The 2.D state-

a 2-D realization theory where markov pa- space model corresponds to a pair of rowcol-

rameters correspond to higher-order transition s ate equati ons hic pr th r ans-
probbiltie. Th imlictios offorulaingumn state equations which propagate the transi-

probabilities. The implications of formulating tion probabilities in space, and a temporal state
a Markov chain model in this state-space do- equation that propagates them in time. The ob-
main is that many equivalent representations servations correspond to the higher order tran-
may exist, some of which may have better ro- sition probabilities and thus can be seen as
bustness properties. A modified hiankel ap- lower level Markov parameters. Finally, the
proximation algorithm is presented which ex- parameters of the Markov model are unique
actly matches all the Markov parameters. The modulo a similarity transformation of the

algorithm is an extension of the 2-D harmonic state-space.

retrieval algorithm introduced in [6].

A modified Hankel approximation al-
1. Introduction gorithm is presented which exactly matches the

Markov chain models have been used upper level Markov parameters defined as the
extensively to model random phenomena with higher order transition probability matrices.
a particular type of dependence; the Markov de- The algorithm is an extension of the 2-D har-
pendence. A stationary, finite state Markov monic retrieval algorithm introduced in (6]. In
chain is defined as a stochastic process having the following section, we define some of the ba-
a finite number of states, the Markovian de- sic properties of Markov chains. In section 3,
pendence, stationary transition probabilities, we present our 2-D realization theory for

and an initial set of probabilities {xj(0)}i -.  Markov chains. Finally, in section 4, we in-
Such a process is said to be m; thefu-troduce the Markov chain realization algo-Suc aprces i sidtobememoryless; the fu- rithm.
ture behavior depends only on its present state
and not on its past history. Hence, only a lim- 2. Preliminaries: Definition and Properties
ited amount of information is required to prop- of Markov Chains
agate the conditional distribution of a Markov
process. Such Markov structure arises in con- A stochastic process (4Cn)) exhibits the
nection with decision making under uncer- Markovian property if
tainty [11, queueing theory [21, hidden Markov
models [3], stochastic dynamic programming p (n+l)=j 14(n)=i I = p , (n+l)=j I 4(n)=i, (1)
[41, and the solution of linear algebraic, inte- 4(n-1)=ij, 4(n-2)=i2, ... 4(0)=i}
gral, and differential equations [51, to name for n = 0,1,2, ... , and every sequenceonly a few. frn=012...adeeysqec jii ..

in). This is equivalent to stating that the proba-
Although Markov chains have the con- bility of an event at time n+1 given only the out-

cept of state and Markov propagation property come at time n is equal to the probability of the
embedded in it, there does not seem to be any event at time n+1 given the entire state history
connection with the state-space formulation of of the system. The conditional probabilities
linear dynamical systems. Having an equiv-
alent linear systems theory for Markov chain pij(l) = p{ 4(n+1)=j I 4(n)=i (2)
models, one can select a canonical representa-

CH2917-3/90/0000-08531 .00 0 1990 IEEE I"



are called one-step transition probabilities, and and satisfy the following conditions:
are said to be stationary if 0 < i S 1 (9a)
lij(1) = P{ 4(n+l)=j I 4(n)=i I = p{ 4(1)=j 14 (O)=i )(3) N.i

V n=0, 1,2,... N-I 2j=1 (9b)

so that the transition probabilities remain un-

changed through time. These values may be = 1

displayed in a matrix P(1) = [Pi], called the i-o (9c)
one-step transition matrix. The (NxN) matrix and 0 j <N-1
PMi) satisfies

0:pj(1)<1 (4a) Finally, for P= lim P(k), X=I is the only
N-i k-*-o

pij1i)=1 for 0<i<N-1 (4b) nonzero eigenvalue and i and 1=[1 1 ... 1if
j-o are its left and right eigenvectors, respectively.

The existence of one-step, stationary The interested reader may consult references
transition probabilities implies the existence of [71,[81 for further details on Markov chains.
higher-order transition probabilities, which
can be computed from the Chapman-Kol- 3. 2-Dreati9AsonTheoryforMarkov, Chains
mogorov equations, i.e., C

NI ""Consider a 2-D state-space model such
pi,(k+s) = , pj..(k)p~j(s) . (5)" as

xi.ij(k) = AixiC(k) (10a)
V k, s = 0, 1, 2, ... and 0< i,j N-L Here

pij(k) = p{ 4(n+k)=j I 4(n)=i I are called kth-step xii.i(k) = A2xij(k) (10b)

transition probabilities, and may be displayed pj(k) = cxij(k) (10c)

in a kth-step transition matrix P(k)= [ij(k)],
where, in general where xj(k) is an (Nxl) state vector, A, and As

are (NxN) constant matrices, c is a (ixN) vec-
0 pnk) 1 V k = 0, 1,2,... (6a) tor, and Pij(k) is a scalar measurement corre-

and 0 < iJ <N-i sponding to the (ij)th element of the kth-order

N-i transition matrix. The dynamics of the
I pj(k) =1 V k =0, 1,2, Markov chain can be incorporated by allowing
j-o (6b) the state vector to vary with transitions, i.e,

and 0<i N-1

It should be noted that pj(O) = Sj (Kronecker xij(k+l) = Wxij(k) (11)

delta), thus, P(0) = It (NxN identity matrix), where W is an (NxN) transition matrix. In

The unconditional probability of (4(n)) addition we assume that A, and A2 are stability

being in state j at time n = k is given by matrices and the pairs (A,, c) and (A2, x.(0))

N-I are observable and controllable, respectively.
rc(k) = p( 4(k)=j I = 7 x(O)pi(k) If we recursively solve the state equations (10a),

i o (7) (11), and (10b), and substitute them in (10c), we
Vk=i,2,... and 0<j<N-1 findthat

and in row vector form pij(k)=cAiWkAx...(0) (12)

ff(k) = ( x.(k) x,(k) (k) ... XN.I(k) ] (8) corresponds to the Markov parameters of the 2-
D model (10)-(11). However, it should be clear

In general, for irreducible, ergodic Markov from our 2-D model that the matrices

chains, the steady-state probabilities Xj are A, A2, and W must commute with each other.
independent of i, i.e., As we will see later, the constraints imposed by

P(0) does not allow this commutativity property
lik pij(k) = li ;(k) = Z to hold. This imposes a constraint on the order

in which the state equations can be updated. In
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order to avoid any confusion with this partial Proof: Recall that P(O) = OC(O) = IN, where
ordering, we rewrite state equations (10b) and
(11) as c

x.j(= A2x..(k) (10b') cA 12

Xj(k+l) = Wx(k) (11') cM

Notice that (11') implies x.,(k+s) = WkAix.,(s). cAN.
Also, the order of state updates is j-k-i (column, - J

time, row), which leads to the Markov C(O)=[ x.,.(O) A2x..(O) A2x ....A''x...(0)
parameters (12).

and by the observability and controllability as-The solution to the Chapman-Kol-

mogorov equations yield the higher-order sumption (p(O) = p(C(O)) = N), 0 = C(0)i. Fur-

transition probabilities, i.e., thermore, Ox.,(O) = el (the first element of the

N-i standard basis in RN) and OAix.(0) = 0, thus
plj(k+s) = 7 pi,.(k)pmj(s) Aix.,.(0) = 0 implies that x...(O) is an element of

m=0

-I cA'A2x..°(k)cA" Ax..(s) N.,(Ai). In fact, span( x.(0) } : Np(A). Am=O l~.(A~I x.(0)

= cA!W [o A'xC,(O)cA,' x°.s) similar argument implies cA2C(O)= 0 T and thus
cA Wk W.(0)A~x.o(S)- c is an element of the left null space of A2. The

= cAkWx.o(k+s) normalization comes from paO) = cxaO) = 1.
To prove property (ii) we need to make use of the

where Cayley-Hamilton Theorem which states that
N-i A(Ai) = A(A,) = 0 (characteristic polynomial),

W.,(O) = A"xo,(O)cA" (14)
m-o i.e., V 05j<N-1

can be thought of being a cross Grammian [9] AN = - aN.IA "  -A' 2 .
having joint observability and controllability
properties and satisfying the following Gram- cANA~xoA(O) = - cJOAx.,.(O) (16)
mian equation =-c;=0

W,.(O) = A2Wr.(O)Ai + x.,,(O)c (15) thus, cArC(O) = OT and since cT : Np(Aj), it fol-

We remark that (15) requires N to be large or lows that Al = [0] A dual argument can be used

A,' = A7 = [01 V m >N. In the following theorem to show that Ar = [0] Property (iii) follows from
we prove the latter case, along with other the fact that W.(O) = C(O = IN and the use of

properties from (A,, A2, W, c, x,(O))N. (15). To prove property (iv) we need the follow-
ing identities from [10, pp. 140 - 141]:

Theorem 1: Given an Nth-order 2-D realiza- in i fro 1010 - 141(1

tion (A,, A2, W, c, X.,(O))N, the following proper- (17)
ties have to be satisfied in order for it to charac- x..(o)C - tI I = (-g)N'l CX..(O) - A I
terize a Markov chain: which implies that gI= 1 is the only nonzero

i) x..(0) e N.(Ai) and cT e N.(A2) eigenvalue of x.4(o)c, therefore, the eigenvalues

such that cx.0) = 1 of A2A, are X = (,u - 1) = 1 with multiplicity (N-I)
ii) AT= A: =[o] V m >N and X = 0. The same holds true for AA 2 , hence,
iii) A,A = IN - xJ0)C rank(AiA2) = N-1. Now, since
iv) p(A) = p(A2) = p(AA2) = N-1
v) Xk(Ai) = (A) = 0 ; k = 1, 2, ... , N p(AA 2) < min[p(A), p(A2)] < N

and X(As Ai) = (1, 1, 1,... , 1, 0) N-1 - min[p(A), p(A2)] s N
vi) A1 AsA, =A, and A2AA = A2 we know that the lower bound is satisfied sincevii) A1 , A2 , and W cannot commutewith each other the dimension of the null spaces of At and Aj isat least one (it is indeed one), therefore,
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the left by m columns. Then by the previous The Markov chain realization algorithm con-
eigenvalue-eigenvector properties, one can sists of a pair of upper/lower level steps to de-
show that N(N-1) rows of O(A, A, c) and termine [0, C(0), W] and [At, A2, c, x-1(0)]N., re-

columns of C(A, A2, x.,(0)) are repeated. This spectively. Both steps can be achieved through a
proves properties (i) and (iii) since rank(O) = singular value decomposition (svd) of H, i.e.,
rank(C(0)) = N by definition of P(O). To prove H =

property (ii) it is easy to show that H can be con-

structed so that column block(j+I) = P(1)column OUZI (23)
block(j) and row block(i+l) = P(I)row block(i). C = V T

Therefore, P(0) is the only block in H that is in- where U is a (KNxN) orthonormal matrix, Z is
dependent of the others, and is of full rank. 03 an (NxN) diagonal matrix containing the

4. Markov Chain e tionAlgorithm Hankel singular values, and V is a (KNxN)
orthonormal matrix. The parameters are ob-

Given P(1), we can form the Hankel tained from
matrix using 2K-2 Markov parameter matrices Unner Level Parameters: [0, C(0), WI

from P(k) = P(1 )k, i.e.,
0 = first (NxN) block of 0

P(0) P(1) ... P(K-1) C(0)=first(NxN) block ofC (24)

P(1) P(2) ... P(K)J W = [0'O&--- O; = Ci[C(cTT"

L P(K-1) P(K) ... P(2K-2) j where O consists of the first N(K-1) rows of 0

and O of the last N(K-1) rows of 0. The same
OC() OWC(0) ... OW '1C(0) definition applies to C.

OWC(O) OW2C(0).. OWKC(0) Lower Level Parameters: [A1, A2, c, x7(0)]n

WW c = first (uxN) row of 0
OW 'IC(0) OWC(0)"". OWOC(0)J x..(O) = first (Nxl) column of C(O) (25)

=OC (20) At = C(0)Ot

where P(k) is given by A2 = C(O)O

cW ...(0) cWkA2X.,(0) .. ~ AN' 0

cAiWkx.(O) cAiWkA2x.,(0) ... cAiWkA2NIX.(O)
P(k) = cA2Wkx",(O) cA2WkAjx.(0) ... cA -'kA 'x (0) = OC(k) (21)

cAr'Wkx.,.(0) cAr'lWkAx..(O) ... cA.'1WkA2x (0)

and represents a lower level set of Markov pa- where 0 T is equal to 0 shifted upwards by one
rameters. Similarly, the upper level observ- row, the last one being a (lxN) row of zeros
ability and controllability matrices are since A# = 01; and C(0) is C(0) shifted to the lef

U=[C(O) WC(0)W 2 C(0)... WK.'C(0)] (22a) by one column.

0 We should point out that since p() = N,
0 W OChas Hankel structure, therefore, the

0 OW2  (22b) following Hankel norm property is satisfied

: H-C = .1  (26)

OWK-1 which is of the order of machine precision.
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! I

p(Ai) = p(Aa) = N-1. Property (v) follows from there is another Nth dimensional realization

properties (ii) and (iv) since every nilpotent [Ai, A2 , W, C, ..,(O)]N that satisfies Theorem 1,
matrix has all its eigenvalues equal to zero. i.e., then it can be brought to the above canoni-
Property (vi) follows from properties (i) and cal form by a similarity transformation, i.e.,
(iii), which implies that A, and A2 are g-in-
verses of one another. To prove property (vii) T = C(O)O. Hence, the two realizations are

we need equivalent in the sense of [A,, A, W, c, x.(0)]N

c = ITA, TAT ,  ", TWT, e T40)]N. If we
recall from the previous section, the initial

cA probabilities are used in a state equation such
0 A2= c as

x(k) = x(O)P(k)
0%-4-^. (18)

SAi Ij = X(O)OW C(O)

CA,() =[ x.o,(0) Aix.,o(0) ... A'lxo'o(0) ] or

and, if we recall, OA, = 0 and CA2(0) = C(0). z(k) = z(0)W (19)

Now, suppose P(0) = OA2CAi(0) = IN, then one can
CAC,()where z(k) =xWkO. Then if we apply the

show that cACA( 0 T e since c7e N.,p(Aj), similarity transformation to (19), i.e.,
therefore, A1A * AAj. Furthermore, it can be w k

shown that cAAs = c and AiA 2x.4(0) = x(0), W= TW T", we get Z(k)T' = z(k) = x(k)O =
thuwe thav cW=cadAiA2x.4 ) = ~x.), orz(k). This shows that the two type of systemsthus, we have cWAAzx.(0) = cWx..,(0), for^ I
instance. A similar argument shows that W [W(), P(1)IN and [A2, 2, W, C, A.(0)]N carry the
cannot commute with A2 either. 0 same information. 0

We now establish the equivalence be- Theorem 3: Given an Nth order 2-D realization
tween Markov chains characterized by [At, A4, W, c, x.(G)]N that satisfies the properties
[I(0), P()]N and a state-space realization char- of Theorem 1, the following properties are

acterized by [A,, A2, W, c, x.(O)]N. equivalent:

i) (Ai, A2,. c) and (Ai, A2. x.,(O)) are
Theorem 2: A Markov chain defined by observable and controllable
[x(0), P(1)]N is equivalent to a 2-D state-space ii) p(H) = p(P(O)) = N
realization [A,, A2, W, c, x.,(O)]N provided this iii) p(O(Ai, A2, c)) = p(O(Ai, c)) = N
one satisfies the properties of Theorem 1. p(C(Ai, A2, x.,o(0))) = p(C(A2, xoo(0))) = N

Proof: Since we know that P(k) = P(1) ' we can Proof: One can show that the global
use these as Markov parameters. Let us now observability and controllability matrices [111
form the Hankel matrix from these higher- have the following structure
order transition matrices, i.e.,

P(0) 0 0

P() OA 01

H= P(2) [P(0) P(1) P(2)... P(K-1)]=OC O(A,, A2, c) oA =

P(K- 1) OAV" ON.J

Then 0 = P(M), C(0) = P(0), W = P(1), c = [1, 0, 0, C(A,, A2, xa0)) = [C(0) AIC(0) ... ArN"C(0) ]
=[ C(o) C,(O)C 2(0)... CN.,(O)]

... 0], x.,(0) = c7, A, = IN, and A- =IN (arrows de- where 0n denotes the observability matrix
note shifted identity matrices) can be shown to shifted downwards by m rows (padded with zero
satisfy the properties of Theorem 1. Suppose rows). Similarly, CM(0) denotes C(0) shifted to



5. Conclusions [9] Fernando, K. V. and H. Nicholson,
"Minimality of SISO linear systems,"

We have presented a 2-D realization Proceedings of the IEEE, Vol. 70, pp.

theory for Markov chains which yields an exact Pro1-1di2, ofte 1982.

representation. It was shown that the Markov

parameters of the 2-D realization exactly match (10] Brogan, W. L., Modern Control Theory,
the higher-order transition probability matri- Quantum Publishers, Inc., New York,
ces of the Markov chain. Since the model is 1974.
obtained from a "balanced" type (in this case
optimal) realization algorithm, one should ex- [111 Attasi, S. "Modelling and recursive

estimation for double indexed se-
pect the robustness properties inherent in these quences", in: System Identification:
algorithms. Moreover, a parametrization of the Advances and Case Studies, ed. R. K.
2-D realizations presented here may lead to
canonical structures for certain probability Mehra and D. Lainiotis, Academic
matrices, i.e., birth-death chains, queueing Press, New York, pp. 289-348, 1979.
chains, etc.. Another potential application is in
the identification of Markov chains from given
data. These issues and other extensions are
currently being investigated and will be re-
ported elsewhere.
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